细化搜索
结果 491-500 的 6,643
The individual and combined effects of cadmium, polyvinyl chloride (PVC) microplastics and their polyalkylamines modified forms on meiobenthic features in a microcosm 全文
2020
Wakkaf, Takwa | Allouche, Mohamed | Harrath, Abdel Halim | Mansour, Lamjed | Alwasel, Saleh | Mohamed Thameemul Ansari, Kapuli Gani | Beyrem, Hamouda | Sellami, Badreddine | Boufahja, Fehmi
A microcosm experiment was carried out to study the ecotoxicity and interactions between heavy metals and polyvinyl chloride microplastics. Fifteen treatments were tested and results were examined after one month. In details, this work aims to study the ecotoxicological effects of cadmium (10 and 20 mg kg⁻¹ Dry Weight DW), polyvinyl chloride (PVC) and its modified forms; PVC-DETA (PD) and PVC-TETA (PT) (20 and 40 mg kg⁻¹ DW), separately and in mixtures, on meiofauna from Bizerte lagoon (NE Tunisia) with focus on nematode features. The results obtained showed that individual treatments were toxic for meiofauna and particularly for free-living nematodes. No clear trends characterized the numerical responses but significant reductions were observed for diversity indices. Moreover, the binary combinations of contaminants have a lesser toxic effect compared to their individual effects. This effect could be related to the high-capacity chelating ability of PVC and its polymers against cadmium.
显示更多 [+] 显示较少 [-]Contributions of dietary, demographic, disease, lifestyle and other factors in explaining variabilities in concentrations of selected monohydroxylated polycyclic aromatic hydrocarbons in urine: Data for US children, adolescents, and adults 全文
2020
Jain, Ram B.
Data from National Health and Nutrition Examination Survey for 2003–2014 for US children aged 6–11 years (N = 2097), adolescents aged 12–19 ears (N = 2642), and adults aged ≥ 20 years (N = 9170) were analyzed to investigate the effects of dietary, demographic, disease, lifestyle, and other factors on concentrations of nine metabolites of polycyclic aromatic hydrocarbons (PAH) in urine. PAHs analyzed were: 1-hydroxynaphthalene, 2-hydroxynaphthalene, 2-hydroxyfluorene, 3-hydroxyfluorene, 9-hydroxyfluorene, 1-hydroxyphenanthrene, 2-hydroxyphenanthrene, 3-hydroxyphenanthrene, and 1-hydroxypyrene. Adults with diabetes were found to have higher adjusted levels of 1-hydroxynaphthalene (4139 vs. 3622 ng/L, p < 0.01) than nondiabetics. Adults with albuminuria had higher adjusted levels of 1-hydroxynaphthalene (4140 vs.3621 ng/L, p < 0.01) and 2-hydroxynaphthalene (6039 vs. 5468 ng/L, p < 0.01) than those without albuminuria. Children with albuminuria had lower adjusted levels of 9-hydroxyfluorene (162 vs. 187 ng/L, p = 0.04), 1-hydroxyphenanthrene (92 vs. 108 ng/L, p < 0.01), and 1-hydroxypyrene (118 vs. 138 ng/L, p < 0.01) than those without albuminuria. The ratios of smoker to nonsmoker adjusted levels for adults varied from a low of 1.4 for 2-hydroxyphenanthrene to a high of 5.6 for 3-hydroxyfluorene. Exposure to environmental tobacco smoke at home was associated with higher levels of most OH-PAHs among children, adolescents, and adults. Consumption of red meat not processed at high temperatures was associated with increased levels of 1-hydroxypyrene (β = 0.00040, p = 0.01), 1-, 2-, and 3-hydroxyphenanthrene, 3-, and 9-hydroxyfluorene. Consumption of red meat processed at high temperatures was associated with increased levels of 2-hydroxynaphthalene (β = 0.00046, p = 0.02) among adults. Consumption of fish processed at high temperatures was associated with decreased levels of 1-hydroxynaphtahlene (β = − 0.00088, p < 0.01), 2-, 3-, and 9-hydroxyfluorene, 1-, 2-, and 3-hydroxyphenanthrene. Among adults, alcohol consumption and caffeine may be associated with increased levels of certain OH-PAHs. Oxidative stress and inflammation associated with exposure to PAHs are associated with albuminuria and have the potential to lead to the development of diabetes.
显示更多 [+] 显示较少 [-]Combined effects and toxicological interactions of perfluoroalkyl and polyfluoroalkyl substances mixtures in human liver cells (HepG2) 全文
2020
Ojo, Atinuke F. | Peng, Cheng | Ng, J. (Jack)
The combined effects and toxicological interactions of perfluoroalkyl and polyfluoroalkyl substances (PFAS) mixtures remain largely unknown even though they occur as complex mixtures in the environment. This study investigated the toxicity of individual and combined PFAS to human liver cell line (HepG2). The Combination Index (CI)-isobologram equation method was used to determine the toxicological interactions of PFAS in binary, ternary and multi-component mixtures. The results indicated that the cytotoxicity of individual PFAS to HepG2 cells increased with increasing carbon chain lengths when separated into non-sulfonated and sulfonated groups. The respective cytotoxicity of PFAS is in the order of PFDA > PFNA > PFOA > PFHpA for perfluoroalkyl carboxylic acids and in the order of PFOS > PFHxS for perfluoroalkane sulfonic acids. The toxicological interaction of PFOS and PFOA with other PFAS clearly showed a different pattern of combined toxicity in HepG2 Cells. The binary, ternary, and multi-component combinations of PFOS with PFOA, PFNA, PFDA, PFHxS, and PFHpA displayed synergistic interactions for almost all inhibitory effect levels tested, whereas, either synergistic or antagonistic effect was observed in mixtures with PFOA. Overall, the pattern of interactions of PFAS mixtures is predominated by synergism, especially at low to medium effect levels; the exceptions to this were the antagonistic interactions found in mixture with PFOA, PFHxS, and PFHpA. These cytotoxicity results may have an implication on the health risk assessment of PFAS mixtures.
显示更多 [+] 显示较少 [-]Treatment of biodigested coffee processing wastewater using Fenton’s oxidation and coagulation/flocculation 全文
2020
Gomes de Barros, Valciney | Rodrigues, Carmen S.D. | Botello-Suárez, Wilmar Alirio | Duda, Rose Maria | Alves de Oliveira, Roberto | da Silva, Eliana S. | Faria, Joaquim L. | Boaventura, Rui A.R. | Madeira, Luis M.
Biodigested coffee processing wastewater (CPW) presents a high organic load and does not meet the limits imposed by legislation (namely in Brazil) for discharge into water bodies. Anaerobic digestion generally cannot provide a satisfactory organic matter reduction in CPW as a significant fraction of recalcitrant compounds still persists in the treated effluent. So, this study aims to find alternative ways to remove refractory organic compounds from this wastewater in order to improve the biodegradability and reduce the toxicity, which will allow its recirculation back into the anaerobic digester. Three treatment approaches (Fenton’s oxidation - Approach 1, Coagulation/flocculation (C/F) - Approach 2, and the combination of C/F with Fenton’s process - Approach 3) were selected to be applied to the biodigested CPW in order to achieve that objective.The application of the Fenton process under the optimal operating conditions (initial pH = 5.0; T = 55 °C, [Fe³⁺] = 1.8 g L⁻¹ and [H₂O₂] = 9.0 g L⁻¹) increased the biodegradability (the BOD₅:COD ratio raised from 0.34 ± 0.02 in biodigested CPW to 0.44 ± 0.01 after treatment) and eliminated the toxicity (0.0% of Vibrio fischeri inhibition) along with moderate removals of organic matter (51.3%, 55.7% and 39.7% for total organic carbon – TOC, chemical oxygen demand – COD and biochemical oxygen demand - BOD₅, respectively). The implementation of a coagulation/flocculation process upstream from Fenton’s oxidation, under the best operating conditions (pH 10–11 and [Fe³⁺] = 250 mg L⁻¹), also allowed to slightly increase the biodegradability (from 0.34 to 0.47) and reduce the toxicity, whereas providing a higher removal of organic matter (TOC = 76.2%, COD = 76.5 and BOD₅ = 66.3% for both processes together). Approach 1 and Approach 3 showed to be the best ones, implying similar operating costs (∼74 R$ m⁻³/∼17 € m⁻³) and constitute an attractive option for managing biodigested CPW.
显示更多 [+] 显示较少 [-]Oxidative stress response and proteomic analysis reveal the mechanisms of toxicity of imidazolium-based ionic liquids against Arabidopsis thaliana 全文
2020
Jin, Mingkang | Wang, Huan | Liu, Huijun | Xia, Yilu | Ruan, Songlin | Huang, Yuqing | Qiu, Jieren | Du, Shaoting | Xu, Linglin
Ionic liquids (ILs) are extensively used in various fields, posing a potential threat in the ecosystem because of their high stability, excellent solubility, and biological toxicity. In this study, the toxicity mechanism of three ILs, 1-octyl-3-methylimidazolium chloride ([C₈MIM]Cl), 1-decyl-3-methylimidazolium chloride ([C₁₀MIM]Cl), and 1-dodecyl-3-methylimidazolium chloride ([C₁₂MIM]Cl) on Arabidopsis thaliana were revealed. Reactive oxygen species (ROS) level increased with higher concentration and longer carbon chain length of ILs, which led to the increase of malondialdehyde (MDA) content and antioxidase activity, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and peroxidase (POD) activities. SOD, CAT, and GPX activities decreased in high ILs concentration due to the excessive ROS. Differentially expressed protein was analyzed based on Gene ontology (GO) and KEGG pathways analysis. 70, 45, 84 up-regulated proteins, and 72, 104, 79 down-regulated proteins were identified in [C₈MIM]Cl, [C₁₀MIM]Cl, and [C₁₂MIM]Cl treatment, respectively (fold change ≥ 1.5 with ≥95% confidence). Cellular aldehyde metabolic process, mitochondrial and mitochondrial respiratory chains, glutathione transferase and oxidoreductase activity were enriched as up-regulated proteins as the defense mechanism of A. thaliana to resist external stresses. Chloroplast, photosynthetic membrane and thylakoid, structural constituent of ribosome, and transmembrane transport were enriched as the down-regulated protein. Compared with the control, 8 and 14 KEGG pathways were identified forup-regulated and down-regulated proteins, respectively, in three IL treatments. Metabolic pathways, carbon metabolism, biosynthesis of amino acids, porphyrin and chlorophyll metabolism were significantly down-regulated. The GO terms annotation demonstrated the oxidative stress response and effects on photosynthesis of A. thaliana in ILs treatment from biological process, cellular component, and molecular function categories.
显示更多 [+] 显示较少 [-]Effect of different air pollution control devices on the gas/solid-phase distribution of PCDD/F in a full-scale municipal solid waste incinerator 全文
2020
Lin, Xiaoqing | Ma, Yunfeng | Chen, Zhiliang | Li, Xiaodong | Lu, Shengyong | Yan, Jianhua
The emission of polychlorinated dibenzo-p-dioxins and -furans (PCDD/F) from full-scale municipal solid waste incinerators (MSWI) is harmful to human and environmental health. This study analyzes the effect of different units of an air pollution control devices (APCDs), i.e. the semi-dry scrubber, fabric filter (FF), selective catalytic reduction (SCR), and wet scrubber (WS), on the removal characteristics and gas- and solid-phase distributions of PCDD/F in MSWI flue gas. APCDs reduce PCDD/F concentrations from 24.9 ng Nm⁻³ to 0.979 ng Nm⁻³ (2.16 ng I-TEQ Nm⁻³ to 0.0607 ng I-TEQ Nm⁻³), with a total removal efficiency (RE) of 96.1% (97.2% I-TEQ). Specifically, APCDs remove more than 95% of both gas- and solid-phase PCDD/F. The FF coupled with active carbon injection (FF + ACI) substantially reduces both gas- and solid-phase PCDD/F concentrations with an RE of 97.2% (98.7% I-TEQ). Additionally, FF + ACI exhibits a better RE of PCDF (98.9%) than PCDD (94.6%) and leads to PCDD congeners dominating the gas-phase. Both desorption and destruction of PCDD/F occur in the SCR, which favors removal of gas-phase PCDD/F but increases solid-phase PCDD/F. Therefore, SCR only decreases PCDD/F with a low RE of 27.6% (16.9% I-TEQ). However, SCR reduces NOₓ with a high RE of 82.3%, which could inhibit the RE of PCDD/F because of their different reaction mechanisms. WS increases PCDD/F in both the gas and solid-phase by 1.95 times (2.57 times for I-TEQ) due to the memory effect, which typically increases the total mass concentration of PCDD/F and the proportions of lower-chlorinated gas-phase PCDD/F. Migration of gas- and solid-phase PCDD/F are also analyzed according to temperature. The results of this study can contribute to the optimized design of industrial APCDs for controlling PCDD/F emissions from MSWI.
显示更多 [+] 显示较少 [-]The HR-CS-GF-AAS determination and preconcentration of palladium in contaminated urban areas, especially in lichens 全文
2020
Komendova, Renata
The increasing content of platinum group metal particles emitted into the environment by car traffic is gradually attracting the attention of the scientific community. However, the methods for the determination of platinum group metals in environmental matrices are either costly or suffer from low sensitivity. To facilitate the use of less sensitive, but significantly cheaper, devices, the preconcentration of platinum group metals is employed. For platinum, a multitude of preconcentration approaches have been published. On the contrary, the preconcentration approaches for palladium are still rare. In this work, the development, optimization, and testing of a new approach is described; it is based on a preconcentration of palladium on octadecyl modified silica gel together with the complexing agent dimethylglyoxime, and it is then analyzed with the high-resolution continuum-source atomic absorption spectrometry. For comparison, a newly developed sorbent, QuadraSil™ TA, with a high affinity for platinum group metals was also tested. The preconcentraiton approach was tested on the lichen Hypogymnia physodes, which served as a bioindicator of palladium emissions. The case study site was a mid-sized city in central Europe: Brno, Czech Republic. The dry “bag” monitoring technique was used to collect the palladium near roads with a large span of traffic density. The developed analytical approach confirmed an increasing concentration of palladium with increasing exposure time and intensity of the traffic. Consequently, a simple relationship between the amount of bioaccumulated palladium and traffic density was established.
显示更多 [+] 显示较少 [-]Associations of annual ambient PM2.5 components with DNAm PhenoAge acceleration in elderly men: The Normative Aging Study 全文
2020
Wang, Cuicui | Koutrakis, Petros | Gao, Xu | Baccarelli, Andrea | Schwartz, Joel
Current studies indicate that long-term exposure to ambient fine particulate matter (PM₂.₅) is related with global mortality, yet no studies have explored relationships of PM₂.₅ and its species with DNAm PhenoAge acceleration (DNAmPhenoAccel), a new epigenetic biomarker of phenotypic age. We identified which PM₂.₅ species had association with DNAmPhenoAccel in a one-year exposure window in a longitudinal cohort. We collected whole blood samples from 683 elderly men in the Normative Aging Study between 1999 and 2013 (n = 1254 visits). DNAm PhenoAge was calculated using 513 CpGs retrieved from the Illumina Infinium HumanMethylation450 BeadChip. Daily concentrations of PM₂.₅ species were measured at a fixed air-quality monitoring site and one-year moving averages were computed. Linear mixed-effect (LME) regression and Bayesian kernel machine (BKM) regression were used to estimate the associations. The covariates included chronological age, body mass index (BMI), cigarette pack years, smoking status, estimated cell types, batch effects etc. Benjamini-Hochberg false discovery rate at a 5% false positive threshold was used to adjust for multiple comparison. During the study period, the mean DNAm PhenoAge and chronological age in our subjects were 68 and 73 years old, respectively. Using LME model, only lead and calcium were significantly associated with DNAmPhenoAccel. For example, an interquartile range (IQR, 0.0011 μg/m³) increase in lead was associated with a 1.29-year [95% confidence interval (CI): 0.47, 2.11] increase in DNAmPhenoAccel. Using BKM model, we selected PM₂.₅, lead, and silicon to be predictors for DNAmPhenoAccel. A subsequent LME model showed that only lead had significant effect on DNAmPhenoAccel: 1.45-year (95% CI: 0.46, 2.46) increase in DNAmPhenoAccel following an IQR increase in one-year lead. This is the first study that investigates long-term effects of PM₂.₅ components on DNAmPhenoAccel. The results demonstrate that lead and calcium contained in PM₂.₅ was robustly associated with DNAmPhenoAccel.
显示更多 [+] 显示较少 [-]Transport behavior of micro polyethylene particles in saturated quartz sand: Impacts of input concentration and physicochemical factors 全文
2020
Hou, Jun | Xu, Xiaoya | Lan, Lin | Miao, Lingzhan | Xu, Yi | You, Guoxiang | Liu, Zhilin
The long-term contamination of soil by microplastics may pose risks that are often still not well understood, and the ecological effects of microplastics are mainly dependent on their environmental behavior in environments. This study used saturated quartz sand as a solid porous medium to study the migration and influencing factors of 40–48 μm polyethylene (PE) particles in saturated porous media. The breakthrough curves at different injection concentrations (0.3, 0.4, 0.5 mg/L), flow rates (1.0, 1.5, 2.0, 2.5 ml/L), porous medium particle sizes (1–2, 2–4 mm), ionic strengths (0, 0.01, 0.05 mol/L) and concentrations of fulvic acid (FA) (0, 5, 10 mg/L) were compared and analyzed. The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory was used to more accurately explain relevant transport behaviors. The results showed that the input concentration, flow rate, and particle size can affect the migration of PE particles individually or in combination. As ionic strength increased, the repulsion between microplastics and quartz sand gradually disappeared according to DLVO theory, and their attraction gradually strengthened. As a result, fewer microplastics could penetrate the sand column and reach the water body. With the continuous addition of FA, the repulsive energy between microplastics and quartz sand rose from DLVO theory, and the migration ability of microplastics initially increased before becoming stable because of the effect of straining. In all cases, the migration ability of PE was low (C/C₀ < 0.35), and most PE particles remained in the porous media during the whole experimental periods. This study provides new insights of understanding the migration of microplastics in environment.
显示更多 [+] 显示较少 [-]Deposition of α-pinene oxidation products on plant surfaces affects plant VOC emission and herbivore feeding and oviposition 全文
2020
Mofikoya, Adedayo O. | Yli-Pirilä, Pasi | Kivimäenpää, Minna | Blande, James D. | Virtanen, Annele | Holopainen, Jarmo K.
White cabbage, Brassica oleracea, plants and artificial leaves covered with B. oleracea epicuticular wax were exposed to α-pinene and α-pinene oxidation products formed through the oxidation of α-pinene by ozone (O₃) and hydroxyl (OH) radicals. O₃ and OH-induced oxidation of α-pinene led to the formation of oxygenated volatile organic compounds (OVOCs) and secondary organic aerosol particles (SOA), referred to together as oxidation products (OP). Exposure of cabbage plants to O₃ and OH-induced α-pinene OP led to the deposition and re-emission of gas-phase OP by exposed cabbage plants. In a series of 2-choice bioassays, the specialist cruciferous herbivore, Plutella xylostella adults deposited less eggs on artificial leaves exposed to α-pinene OP than on control plants exposed to clean filtered air. P. xylostella larvae did not show a specific feeding preference when offered leaves from different exposure treatments. However, the generalist Indian stick insect, Carausius morosus, fed more on control filtered air-exposed plants than on those exposed to α-pinene OP. Taken together, our results show that exposure to α-pinene oxidation products affects VOC emissions of B. oleracea and alters P. xylostella oviposition and C. morosus feeding responses.
显示更多 [+] 显示较少 [-]