细化搜索
结果 4901-4910 的 4,938
An environment-friendly composite as an adsorbent for removal Cu (II) ions 全文
2019
Laysandra, Livy | Ondang, Immanuel Joseph | Ju, Yi-Hsu | Putro, Jindrayani Nyoo | Santoso, Shella Permatasari | Soetarejo, Felycia Edi | Ismadji, Suryadi
The low-cost composite film was prepared by incorporating chitosan, berry soap fruit extract (rarasaponin), and bentonite as the raw materials. The produced chitosan/rarasaponin/bentonite (CRB) composite exhibits outstanding adsorption capability toward copper metal ions (Cu(II)). A series of static adsorption experiments were carried out to determine the isotherm and kinetic properties of CRB composite in the adsorption process. The adsorption equilibrium shows a good fit with the Langmuir isotherm model; the CRB composite has maximum uptake of Cu (II) of 412.70 mg/g; the kinetic adsorption data exhibit a good fit with the pseudo-second-order model. The thermodynamic parameters, ΔH°, ΔG°, and ΔS°, obtained from the isotherm data indicate that the uptake of copper ions by CRB composite is more favored at low temperatures. This study shows that physicochemical modified adsorbent, namely CRB composite, can remove Cu (II) better than pristine adsorbent of AAB and chitosan. The CRB composite also shows potential reusability.
显示更多 [+] 显示较少 [-]Alkali promoted the adsorption of toluene by adjusting the surface properties of lignin-derived carbon fibers 全文
2019
Song, Min | Yu, Lei | Song, Bing | Meng, Fanyue | Tang, Xinhong
The lignin-based carbon fibers were prepared by electrospinning followed by stabilization, carbonization, and activation (i.e., steam activation, one-step KOH activation, and metal activation). The effect of carbonization temperature on prepared carbon fibers (CFs) was investigated. As a result, 800 °C is the most suitable carbonization temperature because the prepared carbon fibers possess greater specific surface area and pore volume. With the help of various characterization methods, the structural characteristics of the activated carbon fibers (ACFs) prepared by the three activation methods and the adsorption performance of toluene were compared. It was observed that the activated carbon fibers prepared by KOH one-step activation method (ACFK) exhibited higher specific surface area (1147.16 m²/g) and greater toluene adsorption (463 mg/g). Particularly, abundant microporous structures and surface functional groups play a vital role in the adsorption process. Further, the adsorption performance of toluene onto ACFK was further investigated in a gas-phase dynamic adsorption system and the results showed that ACFK has great potential application in adsorption of volatile organic compounds.
显示更多 [+] 显示较少 [-]Effect of moisture gradient on rice yields and greenhouse gas emissions from rice paddies 全文
2019
Zhang, Xianxian | Sun, Huifeng | Wang, Junli | Zhang, Jining | Liu, Guolan | Zhou, Sheng
Fluxes of methane (CH₄) and nitrous oxide (N₂O) from two rice varieties, Huayou 14 and Hanyou 8, were monitored using closed chamber/gas chromatography method. Huayou 14 is a commonly grown variety of rice whereas Hanyou 8 is a water-saving and drought-resistant rice (WDR) variety. Low soil volumetric water content (VWC) existed in the treatments on the slope (W5 < W4 < W3 < W2). On the slope, rice yields of Hanyou 8 decreased by 12–39%, and Huayou 14 by 11–46% as compared to the plots on the flat. The total compatible solutes in Hanyou 8 had a greater variational range than Huayou 14. Compared to W1, CH₄ emissions from W2–W5 decreased by 58–86% in Hanyou 8 and 38–86% in Huayou 14, whereas those of N₂O increased by 26–121% in Hanyou 8 and 49–189% in Huayou 14 across both two seasons, which was mainly because the VWC varied in W2–W5 treatment. Under the treatments in the slope (W2, W3, W4, and W5), the global warming potential (GWP) was dominated by N₂O emissions, which accounted for 69–90% of the GWP. Hanyou 8 had greater tolerance for water stress than Huayou 14 did, as evident from the smaller reductions in rice yield and greater variational range of total compatible solutes content. Water stress could reduce CH₄ emissions but decrease N₂O emissions for both rice varieties. This results suggest that planting WDR varieties under water shortage irrigation (such as W4, W5) will be able to maintain rice yields and reduce the GWP with less water.
显示更多 [+] 显示较少 [-]Treatment of synthetic wastewater and cheese whey by the anaerobic dynamic membrane bioreactor 全文
2019
Paçal, Müge | Semerci, Neslihan | Çallı, Barış
The aim of this study was to develop a laboratory-scale anaerobic dynamic membrane bioreactor (AnDMBR) for the treatment of high-strength synthetic and real cheese whey wastewater. We determined the appropriate pore size for a convenient type of support material (nylon mesh) to optimize cake layer formation. The performance of the AnDMBRs was measured in terms of chemical oxygen demand (COD) and solids removal efficiencies. During high-strength synthetic wastewater treatment, the 70-μm pore size AnDMBR achieved COD removal efficiencies of 78% and 96% with COD loading rates of 4.03 and 2.34 kg m⁻³ day⁻¹, respectively, while the 10-μm pore size AnDMBR achieved 66% and 92% COD removal efficiencies at COD loading rates of 5.02 and 3.16 kg m⁻³ day⁻¹. The 10 μm pore size AnDMBR was operated in two periods: first period and second period (before and after physical cleaning) during high-strength synthetic wastewater treatment. The 10-μm pore size AnDMBR removed 83% and 88% of suspended solids during period 1 and period 2, respectively. Furthermore, using a pore size of 10 μm retained 72% of solids (973 mg L⁻¹) in the reactor outlet. The 10-μm pore size AnDMBR performed better than the 70-μm pore size AnDMBR in terms of cake layer formation. The 10-μm pore size AnDMBR was used to treat real cheese whey wastewater, resulting in COD removal efficiencies ranging from 59% (4.32 kg m⁻³ day⁻¹) to 97% (5.22 kg m⁻³ day⁻¹). In addition, 85% of suspended solids were removed from real cheese whey wastewater after treatment. The results show that dynamic membrane technology using a pore size of 10 μm can be used to treat real industrial wastewater.
显示更多 [+] 显示较少 [-]Changes in microbial communities during the removal of natural and synthetic glucocorticoids in three types of river-based aquifer media 全文
2019
Li, Xinyu | Ma, Mengsi | Rene, Eldon R. | Ma, Weifang | Zhang, Panyue
Glucocorticoids in sewage treatment plant effluent discharged into rivers could influence microbial community structure in river-based aquifer media and affect groundwater quality. The effect of representative natural and synthetic glucocorticoids, namely, hydrocortisone (CRL) and dexamethasone (DEX), on the microbial communities in three types of river-based aquifer media was evaluated. The aquifer media was taken from the Beijing Chaobai River (BJ), Hebei Hutuo River (HB), and Tianjin Duliujian River (TJ) and they exhibited different physicochemical and biological properties. The attenuation rates of CRL were 0.175, 0.119, and 0.096 day⁻¹ and for DEX were 0.222, 0.151, and 0.113 day⁻¹ in the media from BJ, HB, and TJ, respectively. All the attenuation rates followed first-order kinetics. The biodiversity decreased significantly with CRL and DEX amendment. The microbial community composition differed in relation to the type of aquifer media and glucocorticoids, especially for BJ at the phylum level. In BJ, the major bacterial genus was Bacillus and in HB it was Rhodobacter. However, in TJ, three bacterial genera (Methylophilus, Methylobacillus, and Methylotenera) and Candidatus_Nitrososphaera were predominant in the microflora. All these genera were able to degrade both CRL and DEX. Distance-based redundancy analysis revealed that total organic carbon (TOC), the type of glucocorticoid, and the pH were the main factors explaining the variations in microbial community composition.
显示更多 [+] 显示较少 [-]Remediation of TCE-contaminated groundwater using KMnO4 oxidation: laboratory and field-scale studies 全文
2019
Yang, Zong-Han | Ou, Jiun-Hau | Dong, Cheng-Di | Chen, Chiu-Wen | Lin, Wei-Han | Kao, Chih-Ming
The objectives of this study were to (1) conduct laboratory bench and column experiments to determine the oxidation kinetics and optimal operational parameters for trichloroethene (TCE)-contaminated groundwater remediation using potassium permanganate (KMnO₄) as oxidant and (2) to conduct a pilot-scale study to assess the efficiency of TCE remediation by KMnO₄ oxidation. The controlling factors in laboratory studies included soil oxidant demand (SOD), molar ratios of KMnO₄ to TCE, KMnO₄ decay rate, and molar ratios of Na₂HPO₄ to KMnO₄ for manganese dioxide (MnO₂) production control. Results show that a significant amount of KMnO₄ was depleted when it was added in a soil/water system due to the existence of natural soil organic matters. The presence of natural organic material in soils can exert a significant oxidant demand thereby reducing the amount of KMnO₄ available for the destruction of TCE as well as the overall oxidation rate of TCE. Supplement of higher concentrations of KMnO₄ is required in the soil systems with high SOD values. Higher KMnO₄ application resulted in more significant H⁺ and subsequent pH drop. The addition of Na₂HPO₄ could minimize the amount of produced MnO₂ particles and prevent the clogging of soil pores, and TCE oxidation efficiency would not be affected by Na₂HPO₄. To obtain a complete TCE removal, the amount of KMnO₄ used to oxidize TCE needs to be higher than the theoretical molar ratio of KMnO₄ to TCE based on the stoichiometry equation. Relatively lower oxidation rates are obtained with lower initial TCE concentrations. The half-life of TCE decreased with increased KMnO₄ concentrations. Results from the pilot-scale study indicate that a significant KMnO₄ decay occurs after the injection due to the reaction of KMnO₄ with soil organic matters, and thus, the amount of KMnO₄, which could be transported from the injection point to the downgradient area, would be low. The effective influence zone of the KMnO₄ oxidation was limited to the KMnO₄ injection area (within a 3-m radius zone). Migration of KMnO₄ to farther downgradient area was limited due to the reaction of KMnO₄ to natural organic matters. To retain a higher TCE removal efficiency, continuous supplement of high concentrations of KMnO₄ is required. The findings would be useful in designing an in situ field-scale ISCO system for TCE-contaminated groundwater remediation using KMnO₄ as the oxidant.
显示更多 [+] 显示较少 [-]Effect of irrigation amount and fertilization on agriculture non-point source pollution in the paddy field 全文
2019
Wang, Huiliang | He, Peng | Shen, Chenyang | Wu, Zening
It is the key point to reveal the effect of irrigation water and fertilization conditions on the agriculture non-point pollution in the paddy field. In this study, the estimation model of agricultural non-point source pollution loads at field scale was established on the basis of agricultural drainage irrigation model and combined with pollutant concentration predication model. Based on the estimation model of agricultural non-point source pollution in the field and experimental data, the load of agricultural non-point source pollution in different irrigate amount and fertilization schedule in paddy field was calculated. The results showed that the variation of field drainage varies greatly under different irrigation conditions, and there is an “inflection point” between the irrigation water amount and field drainage amount. The non-point pollution load increased with the increase of irrigation water and showed a significant power correlation. Under the different irrigation condition, the increase amplitude of non-point pollution load with the increase of irrigation water was different. When the irrigation water is smaller, the non-point pollution load increase relatively less, and when the irrigation water increased to inflection point, the non-point pollution load will increase considerably. In addition, there was a positive correlation between the fertilization and non-point pollution load. The non-point pollution load had obvious difference in different fertilization schedule even with same fertilization level, in which the fertilizer pollution load increased the most in the period of turning green to tillering. The results provide some basis for the field control and management of agricultural non-point source pollution.
显示更多 [+] 显示较少 [-]Differences of methods to quantify construction and demolition waste for less-developed but fast-growing countries: China as a case study 全文
2019
Zhang, Ning | Zheng, Lina | Duan, Huabo | Yin, Fengfu | Li, Jiabin | Niu, Yongning
As China and other developing countries continue to urbanize over the next decades, construction and demolition waste (CDW) management has been becoming a significant challenge for urban sustainability in terms of the environment, economy, and safety. However, accurate estimations or statistics of CDW generation are absent from the official national report in spite of their importance to devise sensible interventions to tackle CDW-related problems. This paper examines and compares the applications of three prevailing methods for estimating CDW, including the weight-per-construction-area method (WAM), buildings’ life span-based method, and weight-per-capita method. Specifically, China has been chosen as the case study. This study implies that the weight-per-construction-area method is more appropriate because of the data availability and accuracy at a city or national level. The results of WAM indicate that a total of 4.1 billion metric tons (Bt) of CDW were generated in China in 2016, mainly from demolition waste (85%). Taking the changes of buildings’ life span into account, a projection analysis reveals that the cumulative CDW generation will be 50 Bt between 2017 and 2040 in China (equal to approximately 38 years cumulative generation of global municipal solid waste). Overall, the findings provide some methodological options for scholars, practitioners, and decision-makers to more accurately estimate the amount of the CDW and to develop a more environmentally sound management strategy.
显示更多 [+] 显示较少 [-]Sustainable intensification of rice fallows of Eastern India with suitable winter crop and appropriate crop establishment technique 全文
2019
Kumar, Rakesh | Mishra, Janki Saran | Rao, Karnena Koteswara | Bhatt, Bhagwati Prasad | Hazra, Kali Krishna | Hans, Hansraj | Mondal, Surajit
Rice fallow, a rainfed lowland agro-ecology, is presently gaining particular attention for sustainable cropping intensification in the South Asia. Nevertheless, cropping intensification of rice-fallow areas is largely challenged by non-availability of irrigation, the poor financial status of farmers and soil constraints. Indeed, fast depletion of the soil residual moisture remains the primary obstacle for growing a crop in succession in rice fallows. A field investigation was carried out to identify the most adaptable rice-winter crop rotation and to customize appropriate crop establishment practice for a winter crop that could conserve the soil moisture. Treatments comprised of three crop establishment practices for winter crops [utera (relay cropping, i.e. broadcasting of seeds in standing rice crop 15 days before harvesting), zero tillage (ZT) and ZT with mulching (ZTM)], and five post-rainy-season crops (lentil, chickpea, lathyrus, mustard and linseed). Results showed that lathyrus and lentil could be the potential winter crop in the rice-fallow condition of Eastern India. Except for mustard crop, the productivity of all the winter crops was higher in utera cropping, which was primarily attributed to early crop growth and higher soil moisture content over ZT and ZTM treatments. The higher water use efficiency was recorded under utera cropping over ZT and ZTM treatments. Higher system productivity (system rice equivalent yield) in rice–utera lathyrus (9.3 t ha⁻¹) and rice–utera lentil (8.1 t ha⁻¹) led to higher net returns and production efficiency over other treatments (winter crop × crop establishment practice). Benefits of rice residue mulching were prominent in lentil, mustard and linseed crop productivity. Energy use efficiency of different crop establishment practices follows the trend of utera > ZT > ZTM (p < 0.05), being highest in rice–utera lathyrus (5.3) followed by rice–utera lentil (4.8) crop rotations. The simulated data shows that winter crops grown under utera led to less emission of greenhouse gas (GHG) and low global warming potential (GWP) as compared to ZT and ZTM treatments. Rice–lathyrus, rice–lentil and rice–chickpea systems had lower N₂O emission than rice–mustard and rice–linseed rotations. Hence, lathyrus and lentil could be included in rice fallows ideally with utera for sustainable cropping intensification and improving the farmers’ income in Eastern India.
显示更多 [+] 显示较少 [-]On the performance of electrocoagulation-assisted biological treatment processes: a review on the state of the art 全文
2019
Al-Qodah, Zakaria | Al-Qudah, Yahiya | Omar, Waid
The combined treatment systems have become a potential alternative to treat highly polluted industrial wastewater to achieve high-quality treated effluents. The current review focuses on the treatment systems compromising electrocoagulation (EC) as a pretreatment step followed by a biological treatment step. The reasons for applying EC as a pretreatment process were mainly to (1) detoxify the wastewater by removing inhibitors of the biotreatment step or (2) to remove the major part of the COD or (3) the dissolved materials that could cause fouling to membrane bioreactors or (4) to increase the activity of the microorganisms. This combination represents a new and promising application characterized by higher performance and removal efficiency. The main published findings related to this application are presented and analyzed. Besides, the statistical models used to optimize the process variables and the kinetics of microorganism growth rate are discussed herein. Most of the previous investigations were conducted in a laboratory-scale level with biologically treated water as a feed to the EC process. Only a few works applied a hybrid system consisting of the biological step and the EC step. In all studies, improved performance and higher removal efficiencies of the combined process were achieved particularly when applying aluminum electrodes, providing more than 95% removal efficiency. Many researchers have reported that they had faced a significant problem in the operation of the electrocoagulation process associated with the reduction of electrodes’ efficiency caused by deposits of the coagulation complex. This problem needs to be effectively resolved.
显示更多 [+] 显示较少 [-]