细化搜索
结果 511-520 的 4,936
Immobilization of hexavalent chromium in soil and groundwater using synthetic pyrite particles 全文
2019
Wang, Ting | Huo, Lijuan | Li, Yifei | Qian, Tianwei | Zhao, Dongye
In this study, reactive pyrite (FeS2) particles were prepared through a modified hydrothermal method and tested for immobilization of Cr(VI) in contaminated soil and synthetic groundwater. The addition of a NaAc buffer in the synthetic process resulted in pyrite particles of greater specific surface area, more uniform size, and more crystalline structure. The particles can effectively immobilize Cr(VI) in both water and a model Chinese loess soil. Over 99.9% of Cr(VI) was rapidly removed from water at pH 6.0 (Initial Cr(VI) = 25 mg/L, FeS2 dosage = 0.48 g/L), and the removal remained high (>82%) even at pH 9.5. Both adsorption and reductive precipitation were found operative in the Cr(VI) immobilization, with ∼66% of Cr immobilized due to reduction. Fe(II) ions associated on the FeS2 surface played a key role in the reduction of Cr(VI) to Cr(III), and S22− also facilitated the reductive removal of Cr(VI). The presence of humic acid enhanced Cr(VI) removal at pH 4.0, but the effect was negligible at pH 6.0. Batch kinetic tests showed that treating a Cr(VI)-laden soil with 0.48 g/L (as Fe) of FeS2 decreased the equilibrium water-leachable Cr(VI) by >99.0% at pH 6.0 and by >70.0% at pH 9.0. The distribution coefficient (Kd) value of the pyrite-amended soil was 1477.8 at pH 6.0, which is 306 times higher than for the untreated soil. Column elution tests showed that installation of a 3-cm reactive layer of FeS2 in a soil column was able to capture the leachable Cr(VI) from the soil, and the retardation factor (Rd) for the 3-cm FeS2 layer sample was 381 times higher than that for the plain soil. The synthetic pyrite particles may serve as an reactive material for effective removal or immobilization of Cr(VI) in contaminated water or soil.
显示更多 [+] 显示较少 [-]Indoor vs. outdoor airborne element array: A novel approach using moss bags to explore possible pollution sources 全文
2019
Capozzi, F. | Di Palma, A. | Adamo, P. | Sorrentino, M.C. | Giordano, S. | Spagnuolo, V.
This study investigated by the moss-bag approach the pattern of air dispersed elements in 12 coupled indoor/outdoor exposure sites, all located in urban and rural residential areas. The aims were to discriminate indoor vs. outdoor element composition in coupled exposure sites and find possible relation between moss elemental profile and specific characteristics of each exposure site.Elements were considered enriched when in 60% of the sites, post-exposure concentration exceeded pre-exposure concentration plus two folds the standard deviation. Of the 53 analyzed elements, 15 (As, B, Ca, Co, Cr, Cu, Mn, Mo, Ni, Sb, Se, Sn, Sr, V, Zn) were enriched in moss exposed outdoor, whereas a subset of 7 elements (As, B, Cr, Mo, Ni, Se, V) were enriched also in indoor moss samples. The cluster analysis of the sites based on all elements, clearly separated samples in two groups corresponding to mosses exposed indoor and outdoor, with the latter generally exceeding the first. Among outdoor sites, urban were most impacted than rural; whereas other factors (e.g., heating and cooking systems, building material, residence time and family life style) could affect element profile of indoor environments. Based on the indoor/outdoor ratio, As derived from outdoor and indoor sources, B, Mo and Se were enriched mostly in outdoor sites; Ni, Cr and V were specifically enriched in most indoor samples, supporting the presence of indoor emitting sources for these elements. A PCA of all indoor sites based on enriched elements and site characteristics showed that traffic affected indoor pollution in urban areas. The moss bag approach provided useful information for a global assessment of human exposure.
显示更多 [+] 显示较少 [-]Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: A review 全文
2019
Liu, Xiaolu | Ma, Ran | Wang, Xiangxue | Ma, Yan | Yang, Yongping | Zhuang, Li | Zhang, Sai | Jehan, Riffat | Chen, Jianrong | Wang, Xiangke
Graphene with atomic layer of sp²-hybridized carbon atoms in a hexagonal structure has attracted multidisciplinary attention since its discovery. Due to the inherent advantages of large specific surface area and abundant functional groups, its derivative graphene oxide (GO) nanomaterials have achieved large-scale development in effective pollution treatment. In the past few years, novel GO-based nanomaterials through coupling with other nanomaterials have been synthesized with significant process and applied for efficient elimination of different kinds of pollutants. This paper aims to summarize recent research results on the excellent removal ability of GO-based nanomaterials for various heavy metal ions in aqueous solutions. The synthesis, adsorption process characteristics and interaction mechanism of the adsorbent are emphasized and discussed. The effects of various environmental conditions are outlined. At last, a brief summary, perspective and outlook are presented. This review is intended to provide some thrilling information for the design and manufacture of GO-based nanomaterials for the elimination of heavy metal ions from wastewater in environmental pollution management.
显示更多 [+] 显示较少 [-]Bioturbation of Ag2S-NPs in soil columns by earthworms 全文
2019
Baccaro, Marta | Harrison, Samuel | van den Berg, Hans | Sloot, Laura | Hermans, Davy | Cornelis, Geert | van Gestel, Cornelis A.M. | Brink, Nico W. van den
Sewage sludge contains Ag₂S-NPs causing NP exposure of soil fauna when sludge is applied as soil amendment. Earthworm bioturbation is an important process affecting many soil functions. Bioturbation may be affected by the presence of Ag₂S-NPs, but the earthworm activity itself may also influence the displacement of these NPs that otherwise show little transport in the soil. The aim of this study was to determine effects of Ag₂S-NPs on earthworm bioturbation and effect of this bioturbation on the vertical distribution of Ag₂S-NPs. Columns (12 cm) of a sandy loamy soil with and without Lumbricus rubellus were prepared with and without 10 mg Ag kg⁻¹, applied as Ag₂S-NPs in the top 2 cm of the soil, while artificial rainwater was applied at ∼1.2 mm day⁻¹. The soil columns were sampled at three depths weekly for 28 days and leachate collected from the bottom. Total Ag measurements showed more displacement of Ag to deeper soil layers in the columns with earthworms. The application of rain only did not significantly affect Ag transport in the soil. No Ag was detected in column leachates. X-ray tomography showed that changes in macro porosity and pore size distribution as a result of bioturbation were not different between columns with and without Ag₂S-NPs. Earthworm activity was therefore not affected by Ag₂S-NPs at the used exposure concentration. Ag concentrations along the columns and the earthworm density allowed the calculation of the bioturbation rate. The effect on the Ag transport in the soil shows that earthworm burrowing activity is a relevant process that must be taken into account when studying the fate of nanoparticles in soils.
显示更多 [+] 显示较少 [-]The potential role of sediment organic phosphorus in algal growth in a low nutrient lake 全文
2019
Ni, Zhaokui | Wang, Shengrui | Cai, Jingjing | Li, Hong | Jenkins, Alan | Maberly, Stephen C. | May, Linda
The role of sediment–bound organic phosphorus (Pₒ) as an additional nutrient source is a component of internal P budgets in lake system that is usually neglected. Here we examined the relative importance of sediment Pₒ to internal P load and the role of bioavailable Pₒ in algal growth in Lake Erhai, China. Lake Erhai sediment extractable Pₒ accounted for 11–43% (27% average) of extractable total P, and bioavailable Pₒ accounted for 21–66% (40%) of Pₒ. The massive storage of bioavailable Pₒ represents an important form of available P, essential to internal loads. The bioavailable Pₒ includes mainnly labile monoester P and diester P was identified in the sequential extractions by H₂O, NaHCO₃, NaOH, and HCl. 40% of H₂O−Pₒ, 39% of NaHCO₃−Pₒ, 43% of NaOH−Pₒ, and 56% of HCl−Pₒ can be hydrolyzed to labile monoester and diester P, suggesting that the bioavailability of Pₒ fractions was in decreasing order as follows: HCl−Pₒ > NaOH−Pₒ > H₂O−Pₒ > NaHCO₃−Pₒ. It is implied that traditional sequential fractionation of Pₒ might overestimate the availability of labile Pₒ in sediments. Furthermore, analysis of the environmental processes of bioavailable Pₒ showed that the stabler structure of dissloved organic matter (DOM) alleviated the degradation and release of diester P, abundant alkaline phosphatase due to higher algal biomass promoted the degradation of diester P. The stability of DOM structure and the degradation of diester P might responsible for the spatial differences of labile monoester P. The biogeochemical cycle of bioavailable Pₒ replenishs available P pools in overlying water and further facilitate algal growth during the algal blooms. Therefore, to control the algal blooms in Lake Erhai, an effective action is urgently required to reduce the accumulation of Pₒ in sediments and interrupt the supply cycle of bioavailable Pₒ to algal growth.
显示更多 [+] 显示较少 [-]Effects of foliar applications of ceria nanoparticles and CeCl3 on common bean (Phaseolus vulgaris) 全文
2019
Xie, Changjian | Ma, Yuhui | Yang, Jie | Zhang, Boxin | Luo, Wenhe | Feng, Sheng | Zhang, Junzhe | Wang, Guohua | He, Xiao | Zhang, Zhiyong
In this study, comparative effects of foliar application of ceria nanoparticles (NPs) and Ce3+ ions on common bean plants were investigated. Soil grown bean seedlings were exposed to ceria NPs and Ce3+ ions at 0, 40, 80, and 160 mg Ce·L−1 every other day at the vegetative growth stage for 17 d. The plants were harvested 47 d after the last treatment. Performed analyses involved growth, physiological and biochemical parameters of the plants and nutritional quality of the pods. Ceria NPs at 40 mg Ce·L−1 increased dry weight of the plants by 51.8% over the control. Neither ceria NPs nor Ce3+ ions significantly affected other vegetative growth parameters. Pod yields and nutrient contents except for several mineral elements were also not significantly different among groups. Compared to control, pods from ceria NPs at 80 mg Ce·L−1 had significantly less S and Mn. At 40 and 80 mg Ce·L−1, ceria NPs reduced pod Mo by 27% and 21%, while Ce3+ ions elevated Mo contents by 20% and 18%, respectively, compared with control. Ce3+ ions at 80 and 160 mg Ce·L−1 significantly increased pod Zn by 25% and 120%, respectively, compared with control. At the end of the experiment, Ce3+ ions at 40, 80, and 160 mg Ce·L−1 increased contents of malondialdehyde (MDA) by 46%, 65%, and 82% respectively as compared with control. While ceria NPs led to a significant increase of MDA level only at the highest concentration. X-ray absorption near edge structure (XANES) analysis of the leaf samples revealed that both ceria NPs and Ce3+ ions kept their original chemical species after foliar applications, suggesting the observed effects of ceria NPs and Ce3+ ions on the plants were probably due to their nano-specific properties and ionic properties respectively.
显示更多 [+] 显示较少 [-]Promoting nitrogen removal during Fe(III) reduction coupled to anaerobic ammonium oxidation (Feammox) by adding anthraquinone-2,6-disulfonate (AQDS) 全文
2019
Yang, Yafei | Peng, Hong | Niu, Junfeng | Zhao, Zhiqiang | Zhang, Yaobin
Feammox, i.e., Fe(III) reduction coupled to anaerobic ammonium oxidation, is a potential alternative to ammonium removal in natural and artificial ecosystems. However, the efficiency of Feammox is quite low to restrain its practical application in wastewater/solid disposal. In this study, three batch experiments, including control (Fe₂O₃/AQDS-free), Fe₂O₃ group (25 mM Fe₂O₃ only) and AQDS-Fe₂O₃ group (25 mM Fe₂O₃ and 0.6 mM AQDS), were conducted in 200 mL serum vials to explore whether AQDS can promote Feammox. Results showed that the nitrogen removal efficiency of the AQDS-Fe₂O₃ group was 82.6%, compared with 64.3% of the Fe₂O₃ group and 46.0% in the control. AH₂QDS, the reduced state of AQDS, was detected in the AQDS-Fe₂O₃ group. Another experiment indicated that AH₂QDS was oxidized back to AQDS by Fe₂O₃. These results suggested that AQDS/AH₂QDS had been serving as electron shuttles between ammonium and Fe₂O₃ to successively forward the oxidation of NH₄⁺. X-ray diffraction analysis showed that new Fe(III) species were found in the systems, implying that a Fe(II)/Fe(III) cycle also occurred. In agreement, both iron-reducing and oxidizing bacteria were detected in the systems.
显示更多 [+] 显示较少 [-]Identification of transformation products of carbamazepine in lettuce crops irrigated with Ultraviolet-C treated water 全文
2019
Martínez-Piernas, A.B. | Nahim-Granados, S. | Polo-López, M.I. | Fernández-Ibáñez, P. | Murgolo, S. | Mascolo, G. | Agüera, A.
Transformation of organic microcontaminants (OMCs) during wastewater treatments results in the generation of transformation products (TPs), which can be more persistent than parent compounds. Due to reuse of reclaimed wastewater (RWW) for crop irrigation, OMCs and TPs are released in soils being capable to translocate to crops. Furthermore, OMCs are also susceptible to transformation once they reach the soil or crops. The recalcitrant antiepileptic carbamazepine (CBZ) and some of its frequently reported TPs have been found in agricultural systems. However, there is no knowledge about the fate in reuse practices of multiple CBZ TPs that can be formed during wastewater treatment processes. For the first time, this work presents a study of the behavior of CBZ TPs generated after a conventional Ultraviolet-C (UVC) treatment in an agricultural environment. The UVC-treated water was used for the irrigation of lettuces grown under controlled conditions. The latter was compared to the fate of TPs generated in the peat and plant by irrigation with non-treated water containing CBZ. A suspect screening strategy was developed to identify the TPs using liquid chromatography coupled to quadrupole-time-of-flight (LC-QTOF-MS). The results revealed the presence of 24 TPs, 22 in UVC-treated water, 11 in peat and 9 in lettuce leaves. 4 of the TPs identified in peat (iminostilbene, TP 271B, TP 285A-B); and 3 in leaves (10–11 dihydrocarbamazepine, TP 271A-B) were not previously reported in soils or edible parts of crops, respectively. Comparing the TPs found in peat and lettuces derived from both irrigation conditions, no significant differences regarding TPs formation or occurrence were observed. UVC treatment did not contribute to the formation of different TPs than those generated by transformation or metabolism of CBZ in peat or plant material. This research improves the current knowledge on the fate of CBZ TPs in agricultural systems because of reuse practices.
显示更多 [+] 显示较少 [-]Using the entrapped bioprocess as the pretreatment method for the drinking water treatment receiving eutrophic source water 全文
2019
Wu, Pei-Hsun | Cheng, Yi-Ching | Chen, Haon-Yao | Chueh, Ti-wen | Chen, Hui-Chen | Huang, Li-Hsun | Wu, Zhong-Xian | Hsieh, Tsung-Min | Chang, Chao-Chin | Yang, Ping-Yi | Lin, Cheng-Fang | Yu, Chang-Ping
Control of organic matter, nutrients and disinfection byproduct formation is a major challenge for the drinking water treatment plants on Matsu Islands, Taiwan, receiving source water from the eutrophic reservoirs. A pilot entrapped biomass reactor (EBR) system was installed as the pretreatment process to reduce organic and nitrogen contents into the drinking water treatment plant. The effects of hydraulic retention time (HRT) and combination of preceding physical treatment (ultraviolet and ultrasound) on the treatment performance were further evaluated. The results showed that the EBR system achieved higher than 81%, 35%, 12% and 46% of reduction in chlorophyll a (Chl a), total COD (TCOD), dissolved organic carbon (DOC) and total nitrogen (TN), respectively under varied influent concentrations. The treatment performance was not significantly influenced by HRT and presence/absence of physical pretreatment and the effluent water quality was stable; however, removal efficiencies and removal rates of Chl a, TCOD and DOC showed strong correlation with their influent concentrations. Excitation–emission matrix (EEM) fluorescence spectroscopy identified fulvic-like and humic-like substances as the two major components of dissolved organic matter (DOM) in the reservoir, and decreased intensity of the major peaks in effluent EEM fluorescence spectra suggested the effective removal of DOM without production of additional amount of soluble microbial products in the EBR. Through the treatment by EBR, about 10% of reduction of total trihalomethane formation potential for the effluent could also be achieved. Therefore, the overall results of this study demonstrate that EBR can be a potential pretreatment process for drinking water treatment plants receiving eutrophic source water.
显示更多 [+] 显示较少 [-]Co-transport of multi-walled carbon nanotubes and sodium dodecylbenzenesulfonate in chemically heterogeneous porous media 全文
2019
Zhang, Miaoyue | Bradford, Scott A. | Šimůnek, Jirka | Vereecken, H. (Harry) | Klumpp, Erwin
Multi-walled carbon nanotubes (MWCNTs) are increasing used in commercial applications and may be released into the environment with anionic surfactants, such as sodium dodecylbenzenesulfonate (SDBS), in sewer discharge. Little research has examined the transport, retention, and remobilization of MWCNTs in the presence or absence of SDBS in porous media with controlled chemical heterogeneity, and batch and column scale studies were therefore undertaken to address this gap in knowledge. The adsorption isotherms of SDBS on quartz sand (QS), goethite coated quartz sand (GQS), and MWCNTs were determined. Adsorption of SDBS (MWCNTs » GQS > QS) decreased zeta potentials for these materials, and produced a charge reversal for goethite. Transport of MWCNTs (5 mg L⁻¹) dramatically decreased with an increase in the fraction of GQS from 0 to 0.1 in the absence of SDBS. Conversely, co-injection of SDBS (10 and 50 mg L⁻¹) and MWCNTs radically increased the transport of MWCNTs when the GQS fraction was 0, 0.1, and 0.3, especially at a higher SDBS concentration, and altered the shape of retention profile. Mathematical modeling revealed that competitive blocking was not the dominant mechanism for the SDBS enhancement of MWCNT transport. Rather, SDBS sorption increased MWCNT transport by increasing electrostatic and/or steric interactions, or creating reversible interactions on rough surfaces. Sequential injection of pulses of MWCNTs and SDBS in sand (0.1 GQS fraction) indicated that SDBS could mobilize some of retained MWCNTs from the top to deeper sand layers, but only a small amount of released MWCNTs were recovered in the effluent. SDBS therefore had a much smaller influence on MWCNT transport in sequential injection than in co-injection, presumably because of a greater energy barrier to MWCNT release than retention. This research sheds novel insight on the roles of competitive blocking, chemical heterogeneity and nanoscale roughness, and injection sequence on MWCNT retention and release.
显示更多 [+] 显示较少 [-]