细化搜索
结果 511-520 的 7,280
Graphene-based porous nanohybrid architectures for adsorptive and photocatalytic abatement of volatile organic compounds
2022
Vēlāyutan̲, T. A. | Rizwan, Komal | Rahdar, Abbas | Badran, Mohamed Fathy | Iqbal, Hafiz M.N.
Volatile organic compounds (VOCs) represent a considerable threat to humans and ecosystems. Strategic remediation techniques for the abatement of VOCs are immensely important and immediately needed. Given a unique set of optical, mechanical, electrical, and thermal characteristics, inimitable surface functionalities, porous structure, and substantial specific surface area, graphene and derived nanohybrid composites have emerged as exciting candidates for abating environmental pollutants through photocatalytic degradation and adsorptive removal. Graphene oxide (GO) and reduced graphene oxide (rGO) containing oxygenated function entities, i.e., carbonyl, hydroxyl, and carboxylic groups, provide anchor and dispersibility of their surface photocatalytic nanoscale particles and adsorptive sites for VOCs. Therefore, it is meaningful to recapitulate current state-of-the-art research advancements in graphene-derived nanostructures as prospective platforms for VOCs degradation. Considering this necessity, this work provides a comprehensive and valuable insight into research progress on applying graphene-based nanohybrid composites for adsorptive and photocatalytic abatement of VOCs in the aqueous media. First, we present a portrayal of graphene-based nanohybrid based on their structural attributes (i.e., pore size, specific surface area, and other surface features to adsorb VOCs) and structure-assisted performance for VOCs abatement by graphene-based nanocomposites. The adsorptive and photocatalytic potentialities of graphene-based nanohybrids for VOCs are discussed with suitable examples. In addition to regeneration, reusability, and environmental toxicity aspects, the challenges and possible future directions of graphene-based nanostructures are also outlined towards the end of the review to promote large-scale applications of this fascinating technology.
显示更多 [+] 显示较少 [-]Air monitoring of tire-derived chemicals in global megacities using passive samplers
2022
Johannessen, Cassandra | Saini, Amandeep | Zhang, Xianming | Harner, Tom
Pollution from vehicle tires has received world-wide research attention due to its ubiquity and toxicity. In this study, we measured various tire-derived contaminants semi-quantitatively in archived extracts of passive air samplers deployed in 18 major cities that comprise the Global Atmospheric Passive Sampling (GAPS) Network (GAPS-Megacities). Analysis was done on archived samples, which represent one-time weighted passive air samples from each of the 18 monitoring sites. The target analytes included cyclic amines, benzotriazoles, benzothiazoles, and p-phenylenediamine (PPD) derivatives. Of the analyzed tire-derived contaminants, diphenylguanidine was the most frequently detected analyte across the globe, with estimated concentrations ranging from 45.0 pg/m³ in Beijing, China to 199 pg/m³ in Kolkata, India. The estimated concentrations of 6PPD-quinone and total benzothiazoles (including benzothiazole, 2-methylthio-benzothiazole, 2-methyl-benzothiazole, 2-hydroxy-benzothiazole) peaked in the Latin American and the Caribbean region at 1 pg/m³ and 100 pg/m³, respectively. In addition, other known tire-derived compounds, such as hexa(methoxymethyl)melamine, phenylguanidine, and various transformation products of 6PPD, were also monitored and characterized semi-quantitatively or qualitatively. This study presents some of the earliest data on airborne concentrations of chemicals associated with tire-wear and shows that passive sampling is a viable techniquefor monitoring airborne tire-wear contamination. Due to the presence of many tire-derived contaminants in urban air across the globe as highlighted by this study, there is a need to determine the associated exposure and toxicity of these chemicals to humans.
显示更多 [+] 显示较少 [-]Effects of synthesis temperature on ε-MnO2 microstructures and performance: Selective adsorption of heavy metals and the mechanism onto (100) facet compared with (001)
2022
Yang, Yuebei | Wang, Yaozhong | Li, Xiaofei | Xue, Chao | Dang, Zhi | Zhang, Lijuan | Yi, Xiaoyun
The heavy-metal adsorbent ε-MnO₂ was produced through a simple, one-step oxidation-reduction reaction at three different synthesis temperatures (25 °C, 50 °C and 75 °C) and their morphology and chemical-physical properties were compared. Of the three materials, MnO₂-25 had the largest specific surface area and the highest surface hydroxyl concentration. Its optimal performance was demonstrated by batch adsorption experiments with Pb²⁺, Cd²⁺ and Cu²⁺. Of the three metals, Pb²⁺ was adsorbed best (339.15 mg/g), followed by Cd²⁺ (107.50 mg/g) and Cu²⁺ (86.30 mg/g). When all three metals were present, Pb²⁺ was still absorbed best but now more Cu²⁺ was adsorbed than Cd²⁺. In order to explore the mechanism for the inconsistent adsorption order of Cd²⁺ and Cu²⁺ in single and competitive adsorption, we combined experimental data with density functional theory (DFT) calculations to elucidate the distinct adsorption nature of MnO₂-25 towards these three metals. This revealed that the adsorption affinity of the (100) facet was superior to (001), and since the surface complexes were also more stable on (100), this facet was most likely determining the adsorption order for the single metals. When the metals were present in combination, Pb²⁺ preferentially occupied the active adsorption sites of (100), forcing Cu²⁺ to be adsorbed on the (001) facet where Cd²⁺ was only poorly bound. Thus, the adsorption behavior was affected by MnO₂-25 surface chemistry at a molecular scale. This study provides an in-depth understanding of the adsorption mechanisms of the heavy metals on this adsorbent and offers theoretical guidance for production of adsorbent with improved removal efficiency.
显示更多 [+] 显示较少 [-]Lifelong exposure to pyrethroid insecticide cypermethrin at environmentally relevant doses causes primary ovarian insufficiency in female mice
2022
Ma, Xiaochen | Zhang, Wei | Song, Jingyi | Li, Feixue | Liu, Jing
Pyrethroids are a class of widely used insecticides. Our recent epidemiological study of Chinese women reported that pyrethroid exposure was positively associated with the risk of primary ovarian insufficiency (POI). In this study, we utilized cypermethrin (CP), the most frequently detected pyrethroid in the environment, to recognize how lifelong and low-dose exposure to pyrethroids affects ovarian functions and the underlying mechanism(s). Female mice were exposed to CP at doses of human dietary intake of 6.7 μg/kg/day, an acceptable daily intake (ADI) of 20 μg/kg/day, or the chronic reference dose (RfD) of 60 μg/kg/day, starting from gestational day 0.5 until 44-week-old. We assessed effects on fertility, serum hormone levels, ovarian follicular development and ovarian transcriptomic profiles. Chronic exposure to CP at doses of ADI and RfD caused a significant reduction in the size of the primordial follicle pool on postnatal day (PND) 5 and the number of all types of follicles in 44-week-old mice, lower estrogen and higher gonadotropin levels, as well as decreased fertility. Significant increase in apoptosis and decrease in cell proliferation were observed in CP-exposed ovarian follicles from PND 5 and 44-week-old mice. Ovarian transcriptomic data showed that the pro-apoptotic protein BMF and the cell cycle inhibitor p27 were significantly up-regulated in CP-exposed ovaries. Cyp17a1, Cyp19a1 and Hsd17b1 genes involved in the key steps of steroidogenesis were down-regulated in the ovaries of female mice exposed to CP. This study first reported that lifelong exposure to CP at doses of ADI or RfD caused an ovarian phenotype similar to human POI in female mice and provided a mechanistic explanation. Our findings suggest that lifelong exposure to pyrethroids of low doses, which are recommended as ‘safe’ dosages, may have a significant impact on the ovarian health of female mammals and humans.
显示更多 [+] 显示较少 [-]Geostationary satellite-derived ground-level particulate matter concentrations using real-time machine learning in Northeast Asia
2022
Park, Seohui | Im, Jungho | Kim, Jhoon | Kim, Sang-min
Rapid economic growth, industrialization, and urbanization have caused frequent air pollution events in East Asia over the last few decades. Recently, aerosol data from geostationary satellite sensors have been used to monitor ground-level particulate matter (PM) concentrations hourly. However, many studies have focused on using historical datasets to develop PM estimation models, often decreasing their predictability for unseen data in new days. To mitigate this problem, this study proposes a novel real-time learning (RTL) approach to estimate PM with aerodynamic diameters of <10 μm (PM₁₀) and <2.5 μm (PM₂.₅) using hourly aerosol data from the Geostationary Ocean Color Imager (GOCI) and numerical model outputs for daytime conditions over Northeast Asia. Three schemes with different weighting strategies were evaluated using 10-fold cross-validation (CV). The RTL models, which considered both concentration and time as weighting factors (i.e., Scheme 3) yielded consistent improvement for 10-fold CV performance on both hourly and monthly scales. The real-time calibration results for PM₁₀ and PM₂.₅ were R² = 0.97 and 0.96, and relative root mean square error (rRMSE) = 12.1% and 12.0%, respectively, and the 10-fold CV results for PM₁₀ and PM₂.₅ were R² = 0.73 and 0.69 and rRMSE = 41.8% and 39.6%, respectively. These results were superior to results from the offline models in previous studies, which were based on historical data on an hourly scale. Moreover, we estimated PM concentrations in the ocean without using land-based variables, and clearly demonstrated the PM transport over time. Because the proposed models are based on the RTL approach, the density of in-situ monitoring sites could be a major uncertainty factor. This study identified that a high error occurred in low-density areas, whereas a low error occurred in high-density areas. The proposed approach can be operated to monitor ground-level PM concentrations in real-time with uncertainty analysis to ensure optimal results.
显示更多 [+] 显示较少 [-]Ecotoxicological effects of plastics on plants, soil fauna and microorganisms: A meta-analysis
2022
Huo, Yuxin | Dijkstra, Feike A. | Possell, Malcolm | Singh, Balwant
The interactions of plastics and soil organisms are complex and inconsistent observations on the effects of plastics on soil organisms have been made in published studies. In this study, we assessed the effects of plastic exposure on plants, fauna and microbial communities, with a meta-analysis. Using a total of 2936 observations from 140 publications, we analysed how responses in plants, soil fauna and microorganisms depended on the plastic concentration, size, type, species and exposure media. We found that overall plastics caused substantial detrimental effects to plants and fauna, but less so to microbial diversity and richness. Plastic concentration was one of the most important factors explaining variations in plant and faunal responses. Larger plastics (>1 μm) caused unfavourable changes to plant growth, germination and oxidative stress, while nanoplastics (NPs; ≤ 1 μm) only increased oxidative stress. On the contrary, there was a clear trend showing that small plastics adversely affected fauna reproduction, survival and locomotion than large plastics. Plant responses were indifferent to plastic type, with most studies conducted using polyethylene (PE) and polystyrene (PS) plastics, but soil fauna were frequently more sensitive to PS than to PE exposure. Plant species played a vital role in some parameters, with the effects of plastics being considerably greater on vegetable plants than on cereal plants.
显示更多 [+] 显示较少 [-]Microbial engineering for the production and application of phytases to the treatment of the toxic pollutants: A review
2022
Zhou, Yuwen | Anoopkumar, A.N. | Tarafdar, Ayon | Madhavan, Aravind | Binoop, Mohan | Lakshmi, Nair M. | B, Arun K. | Sindhu, Raveendran | Binod, Parameswaran | Sirohi, Ranjna | Pandey, Ashok | Zhang, Zengqiang | Awasthi, Mukesh Kumar
Phytases are a group of digestive enzymes which are commonly used as feed enzymes. These enzymes are used exogenously in the feeds of monogastric animals thereby it improves the digestibility of phosphorous and thus reduces the negative impact of inorganic P excretion on the environment. Even though these enzymes are widely distributed in many life forms, microorganisms are the most preferred and potential source of phytase. Despite the extensive availability of the phytase-producing microbial consortia, only a few microorganisms have been known to be exploited at industrial level. The high costs of the enzyme along with the incapability to survive high temperatures followed by the poor storage stability are noted to be the bottleneck in the commercialization of enzymes. For this reason, besides the conventional fermentation approaches, the applicability of cloning, expression studies and genetic engineering has been implemented for the past few years to accomplish the abovesaid benefits. The site-directed mutagenesis as well as knocking out have also validated their prominent role in microbe-based phytase production with enhanced levels. The present review provides detailed information on recent insights on the modification of phytases through heterologous expression and protein engineering to make thermostable and protease-resistant phytases.
显示更多 [+] 显示较少 [-]Carbon nanomaterials for the detection of pesticide residues in food: A review
2022
Mishra, Smriti | Mishra, Shivangi | Patel, Shiv Singh | Singh, Sheelendra Pratap | Kumar, Pradip | Khan, Mohd Akram | Awasthi, Himani | Singh, Shiv
In agricultural fields, pesticides are widely used, but their residual presence in the environment poses a threat to humans, animals, insects, and ecosystems. The overuse of pesticides for pest control, enhancement of crop yield, etc. leaves behind a significant residual amount in the environment. Various robust, reliable, and reusable methods using a wide class of composites have been developed for the monitoring and controlling of pesticides. Researchers have discovered that carbon nanomaterials have a wide range of characteristics such as high porosity, conductivity and easy electron transfer that can be successfully used to detect pesticide residues from food. This review emphasizes the role of carbon nanomaterials in the field of pesticide residue analysis in different food matrices. The carbon nanomaterials including carbon nanotubes, carbon dots, carbon nanofibers, graphene/graphene oxides, and activated carbon fibres are discussed in the review. In addition, the review examines future prospects in this research area to help improve detection techniques for pesticides analysis.
显示更多 [+] 显示较少 [-]Long-term PM0.1 exposure and human blood lipid metabolism: New insight from the 33-community study in China
2022
Zhang, Wangjian | Gao, Meng | Xiao, Xiang | Xu, Shu-Li | Lin, Shao | Wu, Qi-Zhen | Chen, Gong-Bo | Yang, Bo-Yi | Hu, Liwen | Zeng, Xiao-Wen | Hao, Yuantao | Dong, Guang-Hui
Ambient particles with aerodynamic diameter <0.1 μm (PM₀.₁) have been suggested to have significant health impact. However, studies on the association between long-term PM₀.₁ exposure and human blood lipid metabolism are still limited. This study was aimed to evaluate such association based on multiple lipid biomarkers and dyslipidemia indicators. We matched the 2006–2009 average PM₀.₁ concentration simulated using the neural-network model following the WRF-Chem model with the clinical and questionnaire data of 15,477 adults randomly recruited from 33 communities in Northeast China in 2009. After controlling for social demographic and behavior confounders, we assessed the association of PM₀.₁ concentration with multiple lipid biomarkers and dyslipidemia indicators using generalized linear mixed-effect models. Effect modification by various social demographic and behavior factors was examined. We found that each interquartile range increase in PM₀.₁ concentration was associated with a 5.75 (95% Confidence interval, 3.24–8.25) mg/dl and a 6.05 (2.85–9.25) mg/dl increase in the serum level of total cholesterol and LDL-C, respectively. This increment was also associated with an odds ratio of 1.25 (1.10–1.42) for overall dyslipidemias, 1.41 (1.16, 1.73) for hypercholesterolemia, and 1.90 (1.39, 2.61) for hyperbetalipoproteinemia. Additionally, we found generally greater effect estimates among the younger participants and those with lower income or with certain behaviors such as high-fat diet. The deleterious effect of long-term PM₀.₁ exposure on lipid metabolism may make it an important toxic chemical to be targeted by future preventive strategies.
显示更多 [+] 显示较少 [-]International quantification of microplastics in indoor dust: prevalence, exposure and risk assessment
2022
Soltani, Neda Sharifi | Taylor, Mark Patrick | Wilson, Scott Paton
This international scale study measured the prevalence of indoor microplastics (MPs) in deposited dust in 108 homes from 29 countries over a 1-month period. Dust borne MPs shape, colour, and length were determined using microscopy and the composition measured using μFTIR. Human health exposure and risk was assessed along with residential factors associated with MPs via a participant questionnaire. Samples were categorised according to each country's gross national income (GNI). Synthetic polymers dominated in low income (LI) (39%) and high income (HI) (46%) while natural fibres were the most prevalent in medium income (MI) (43%) countries. Composition and statistical analysis showed that the main sources of MPs and dust were predominantly from indoor sources. Across all GNI countries, greater vacuuming frequency was associated with lower MPs loading. High income country samples returned higher proportions of polyamides and polyester fibres, whereas in LI countries polyurethane was the most prominent MPs fibre. Exposure modelling showed infants (0–2 years) were exposed to the highest MPs dose through inhalation (4.5 × 10⁻⁵ ± 3 × 10⁻⁵) and ingestion (3.24 × 10⁻² ± 3.14 × 10⁻²) mg/kg-Bw/day. Health risk analysis of constituent monomers of polymers indicates cancer incidence was estimated at 4.1–8.7 per million persons across age groups. This study's analysis showed socio-economic factors and age were dominant variables in determining dose and associated health outcomes of MPs in household dust.
显示更多 [+] 显示较少 [-]