细化搜索
结果 531-540 的 4,033
Soil pollution at outdoor shooting ranges: Health effects, bioavailability and best management practices
2016
Fayiga, A.O. | Saha, U.K.
The total lead (Pb) concentrations of the surface soil, sub surface soil, vegetation and surface waters of outdoor shooting ranges are extremely high and above regulatory limits. Lead is dangerous at high concentrations and can cause a variety of serious health problems. Shooters and range workers are exposed to lead dust and can even take Pb dust home to their families while some animals around the shooting range can ingest the Pb bullets. The toxicity of Pb depends on its bioavailability which has been determined to be influenced greatly by the geochemical properties of each site. The bioavailability of Pb in shooting ranges has been found to be higher than other metal contaminated soils probably because of its very low residual Pb (<1%). Despite being an immobile element in the soil, migration of Pb within shooting ranges and offsite has been reported in literature. Best management practices to reduce mobility of Pb in shooting ranges involve an integrated Pb management program which has been described in the paper. The adoption of the non-toxic “green bullet” which has been developed to replace Pb bullets may reduce or prevent environmental pollution at shooting ranges. However, the contaminated soil resulting from decades of operation of several shooting ranges still needs to be restored to its natural state.
显示更多 [+] 显示较少 [-]Increase in dust storm related PM10 concentrations: A time series analysis of 2001–2015
2016
Krasnov, Helena | Katra, Itzhak | Friger, Michael
Over the last decades, changes in dust storms characteristics have been observed in different parts of the world. The changing frequency of dust storms in the southeastern Mediterranean has led to growing concern regarding atmospheric PM10 levels. A classic time series additive model was used in order to describe and evaluate the changes in PM10 concentrations during dust storm days in different cities in Israel, which is located at the margins of the global dust belt. The analysis revealed variations in the number of dust events and PM10 concentrations during 2001–2015. A significant increase in PM10 concentrations was identified since 2009 in the arid city of Beer Sheva, southern Israel. Average PM10 concentrations during dust days before 2009 were 406, 312, and 364 μg m−3 (median 337, 269,302) for Beer Sheva, Rehovot (central Israel) and Modi'in (eastern Israel), respectively. After 2009 the average concentrations in these cities during dust storms were 536, 466, and 428 μg m−3 (median 382, 335, 338), respectively. Regression analysis revealed associations between PM10 variations and seasonality, wind speed, as well as relative humidity. The trends and periodicity are stronger in the southern part of Israel, where higher PM10 concentrations are found. Since 2009 dust events became more extreme with much higher daily and hourly levels. The findings demonstrate that in the arid area variations of dust storms can be quantified easier through PM10 levels over a relatively short time scale of several years.
显示更多 [+] 显示较少 [-]Tailpipe emissions from gasoline direct injection (GDI) and port fuel injection (PFI) vehicles at both low and high ambient temperatures
2016
Zhu, Rencheng | Hu, Jingnan | Bao, Xiaofeng | He, Liqiang | Lai, Yitu | Zu, Lei | Li, Yufei | Su, Sheng
Vehicle emissions are greatly influenced by various factors that are related to engine technology and driving conditions. Only the fuel injection method and ambient temperature are investigated in this research. Regulated gaseous and particulate matter (PM) emissions from two advanced gasoline-fueled vehicles, one with direct fuel injection (GDI) and the other with port fuel injection (PFI), are tested with conventional gasoline and ethanol-blended gasoline (E10) at both −7 °C and 30 °C. The total particle number (PN) concentrations and size distributions are monitored with an Electrical Low Pressure Impactor (ELPI+). The solid PN concentrations are measured with a condensation particle counter (CPC) after removing volatile matters through the particle measurement program (PMP) system. The results indicate that decreasing the ambient temperature from 30 °C to −7 °C significantly increases the fuel consumption and all measured emissions except for NOx. The GDI vehicle exhibits lower fuel consumption than the PFI vehicle but emits more total hydrocarbons (THC), PM mass and solid PN emissions at 30 °C. The adaptability of GDI technology appears to be better than that of PFI technology at low ambient temperature. For example, the CO, THC and PM mass emission factors of the PFI vehicle are higher than those of the GDI vehicle and the solid PN emission factors are comparable in the cold-start tests at −7 °C. Specifically, during start-up the particulate matter emissions of the PFI are much higher than the GDI. In most cases, the geometric mean diameter (GMD) of the accumulation mode particles is 58–86 nm for both vehicles, and the GMD of the nucleation mode particles is 10–20 nm. The results suggest that the gaseous and particulate emissions from the PFI vehicle should not be neglected compared to those from the GDI vehicle especially in a cold environment.
显示更多 [+] 显示较少 [-]Gas flaring and resultant air pollution: A review focusing on black carbon
2016
Fawole, Olusegun G. | Cai, X.-M. | MacKenzie, A.R.
Gas flaring is a prominent source of VOCs, CO, CO2, SO2, PAH, NOX and soot (black carbon), all of which are important pollutants which interact, directly and indirectly, in the Earth’s climatic processes. Globally, over 130 billion cubic metres of gas are flared annually. We review the contribution of gas flaring to air pollution on local, regional and global scales, with special emphasis on black carbon (BC, “soot”). The temporal and spatial characteristics of gas flaring distinguishes it from mobile combustion sources (transport), while the open-flame nature of gas flaring distinguishes it from industrial point-sources; the high temperature, flame control, and spatial compactness distinguishes gas flaring from both biomass burning and domestic fuel-use. All of these distinguishing factors influence the quantity and characteristics of BC production from gas flaring, so that it is important to consider this source separately in emissions inventories and environmental field studies. Estimate of the yield of pollutants from gas flaring have, to date, paid little or no attention to the emission of BC with the assumption often being made that flaring produces a smokeless flame. In gas flares, soot yield is known to depend on a number of factors, and there is a need to develop emission estimates and modelling frameworks that take these factors into consideration. Hence, emission inventories, especially of the soot yield from gas flaring should give adequate consideration to the variation of fuel gas composition, and to combustion characteristics, which are strong determinants of the nature and quantity of pollutants emitted. The buoyant nature of gas flaring plume, often at temperatures in the range of 2000 K, coupled with the height of the stack enables some of the pollutants to escape further into the free troposphere aiding their long-range transport, which is often not well-captured by model studies.
显示更多 [+] 显示较少 [-]Exposure of Cucurbita pepo to DDE-contamination alters the endophytic community: A cultivation dependent vs a cultivation independent approach
2016
Eevers, N. | Hawthorne, J.R. | White, J.C. | Vangronsveld, J. | Weyens, N.
2,2-bis(p-chlorophenyl)-1,1-dichloro-ethylene (DDE) is the most abundant and persistent degradation product of the pesticide 2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane (DDT) and is encountered in contaminated soils worldwide. Both DDE and DDT are classified as Persistent Organic Pollutants (POPs) due to their high hydrophobicity and potential for bioaccumulation and biomagnification in the food chain. Zucchini (Cucurbita pepo ssp. pepo) has been shown to accumulate high concentrations of DDE and other POPs and has been proposed as a phytoremediation tool for contaminated soils. The endophytic bacteria associated with this plant may play an important role in the remedial process. Therefore, this research focuses on changes in endophytic bacterial communities caused by the exposure of C. pepo to DDE. The total bacterial community was investigated using cultivation-independent 454 pyrosequencing, while the cultivable community was identified using cultivation-dependent isolation procedures. For both procedures, increasing numbers of endophytic bacteria, as well as higher diversities of genera were observed when plants were exposed to DDE. Several bacterial genera such as Stenotrophomonas sp. and Sphingomonas sp. showed higher abundance when DDE was present, while, for example Pseudomonas sp. showed a significantly lower abundance in the presence of DDE. These findings suggest tolerance of different bacterial strains to DDE, which might be incorporated in further investigations to optimize phytoremediation with the possible use of DDE-degrading endophytes.
显示更多 [+] 显示较少 [-]Increase in ozone due to the use of biodiesel fuel rather than diesel fuel
2016
Thang, Phan Quang | Muto, Yusuke | Maeda, Yasuaki | Trung, Nguyen Quang | Itano, Yasuyuki | Takenaka, Norimichi
The consumption of fuel by vehicles emits nitrogen oxides (NOx) and non-methane hydrocarbons (NMHCs) into the atmosphere, which are important ozone precursors. Ozone is formed as a secondary pollutant via photochemical processes and is not emitted directly into the atmosphere. In this paper, the ozone increase resulting from the use of biodiesel and diesel fuels was investigated, and the different ozone formation trends were experimentally evaluated. Known amounts of exhaust gas from a power generator operated using biodiesel and diesel fuels were added to ambient air. The quality of the ambient air, such as the initial NMHC and NOx concentrations, and the irradiation intensity have an effect on the ozone levels. When 30 cm3 of biodiesel fuel exhaust gas (BFEG) or diesel fuel exhausted gas (DFEG) was added to 18 dm3 of ambient air, the highest ratios of ozone increase from BFEG compared with DFEG in Japan and Vietnam were 31.2 and 42.8%, respectively, and the maximum ozone increases resulting from DFEG and BFEG compared with the ambient air in Japan were 17.4 and 26.4 ppb, respectively. The ozone increase resulting from the use of BFEG was large and significant compared to that from DFEG under all experimental conditions. The ozone concentration increased as the amount of added exhaust gas increased. The ozone increase from the Jatropha-BFEG was slightly higher than that from waste cooking oil-BFEG.
显示更多 [+] 显示较少 [-]Australian atmospheric lead deposition reconstructed using lead concentrations and isotopic compositions of archival lichen and fungi
2016
Wu, Liqin | Taylor, Mark Patrick | Handley, Heather K. | Wu, Michael
Lead concentrations and their isotopic compositions were measured in lichen genera Cladonia and Usnea and fungi genus Trametes from the Greater Sydney region (New South Wales, Australia) that had been collected and archived over the past 120 years. The median lead concentrations were elevated in lichens and fungi prior to the introduction of leaded petrol (Cladonia 12.5 mg/kg; Usnea 15.6 mg/kg; Trametes 1.85 mg/kg) corresponding to early industrial development. During the period of leaded petrol use in Australian automobiles from 1932 to 2002, total median lead concentrations rose: Cladonia 18.8 mg/kg; Usnea 21.5 mg/kg; Trametes 4.3 mg/kg. Following the cessation of leaded petrol use, median total lead concentrations decreased sharply in the 2000s: Cladonia 4.8 mg/kg; Usnea 1.7 mg/kg. The lichen and fungi isotopic compositions reveal a significant decrease in ²⁰⁶Pb/²⁰⁷Pb ratios from the end of 19th century to the 1970s. The following decades were characterised by lower allowable levels of lead additive in fuel and the introduction of unleaded petrol in 1985. The environmental response to these regulatory changes was that lichen and fungi ²⁰⁶Pb/²⁰⁷Pb ratios increased, particularly from 1995 onwards. Although the lead isotope ratios of lichens continued to increase in the 2000s they do not return to pre-leaded petrol values. This demonstrates that historic leaded petrol emissions, inter alia other sources, remain a persistent source of anthropogenic contamination in the Greater Sydney region.
显示更多 [+] 显示较少 [-]Spatial variability of heavy metals in estuarine, mangrove and coastal ecosystems along Parangipettai, Southeast coast of India
2016
Sundaramanickam, Arumugam | Shanmugam, Nadanasabesan | Cholan, Shanmugam | Kumaresan, Saravanan | Madeswaran, Perumal | Balasubramanian, Thangavel
An elaborate survey on the contamination of heavy metals was carried out in surface sediments of different ecosystems such as Vellar-Coleroon estuarine, Pichavaram mangrove and coastal region of Parangipettai, Southeast coast of India. The study was intended since, the coal based thermal power plant and oil refinery plant are proposed to set up along this coast and aquaculture industries and dredging activities are developing. The parameters such as soil texture, pH, total organic carbon (TOC) and heavy metal (Fe, Mn, Cu, Cd, Zn and Ni) concentrations were analyzed for the surface sediments during pre and postmonsoon seasons. Among the metals analyzed, Fe and Mn were found to have dominant as the levels were recorded as 11,804 μg g−1 and 845.2 μg g−1 respectively. A significant correlation was observed between total organic carbon (TOC) and heavy metals. In the mangrove ecosystem, the levels of heavy metals found to be maximum indicating that the rich organic matter acts as an efficient binding agent for metals. The overall finding of the present study indicated that the sediments from the entire Vellar-Coleroon estuarine and Pichavaram mangrove ecosystems were found moderately polluted with cadmium metal. The result of cluster analysis indicated disparity in accumulation of heavy metals in sediments of different ecosystems due to the variations in organic matter. The heavy metals were transported from land to coastal through flood during monsoon season reflecting the variations in their levels in different ecosystems at postmonsoon season.
显示更多 [+] 显示较少 [-]Influence of rice straw amendment on mercury methylation and nitrification in paddy soils
2016
Liu, Yu-Rong | Dong, Ji-Xin | Han, Li-Li | Zheng, Yuan-Ming | He, Ji-Zheng
Currently, rice straw return in place of burning is becoming more intensive in China than observed previously. However, little is known on the effect of returned rice straw on mercury (Hg) methylation and microbial activity in contaminated paddy fields. Here, we conduct a microcosm experiment to evaluate the effect of rice straw amendment on the Hg methylation and potential nitrification in two paddy soils with distinct Hg levels. Our results show that amended rice straw enhanced Hg methylation for relatively high Hg content soil, but not for low Hg soil, spiking the same additional fresh Hg. methylmercury (MeHg) concentration was significantly correlated to the dissolved organic carbon (DOC) content and relative abundance of dominant microbes associated with Hg methylation. Similarly, amended rice straw was found to only enhance the potential nitrification rate in soil with relatively high Hg content. These findings provide evidence that amended rice straw differentially modulates Hg methylation and nitrification in Hg contaminated soils possibly resulting from different characteristics in the soil microbial community. This highlights that caution should be taken when returning rice straw to contaminated paddy fields, as this practice may increase the risk of more MeHg production.Rice straw amendment enhanced both Hg methylation and nitrification potential in the relatively high, but not low, Hg soil.
显示更多 [+] 显示较少 [-]Changes in metal availability, desorption kinetics and speciation in contaminated soils during repeated phytoextraction with the Zn/Cd hyperaccumulator Sedum plumbizincicola
2016
Li, Zhu | Jia, Mingyun | Wu, Longhua | Christie, Peter | Luo, Yongming
Phytoextraction is one of the most promising technologies for the remediation of metal contaminated soils. Changes in soil metal availability during phytoremediation have direct effects on removal efficiency and can also illustrate the interactive mechanisms between hyperaccumulators and metal contaminated soils. In the present study the changes in metal availability, desorption kinetics and speciation in four metal-contaminated soils during repeated phytoextraction by the zinc/cadmium hyperaccumulator Sedum plumbizincicola (S. plumbizincicola) over three years were investigated by chemical extraction and the DGT-induced fluxes in soils (DIFS) model. The available metal fractions (i.e. metal in the soil solution extracted by CaCl2 and by EDTA) decreased greatly by >84% after phytoextraction in acid soils and the deceases were dramatic at the initial stages of phytoextraction. However, the decreases in metal extractable by CaCl2 and EDTA in calcareous soils were not significant or quite low. Large decreases in metal desorption rate constants evaluated by DIFS were found in calcareous soils. Sequential extraction indicated that the acid-soluble metal fraction was easily removed by S. plumbizincicola from acid soils but not from calcareous soils. Reducible and oxidisable metal fractions showed discernible decreases in acid and calcareous soils, indicating that S. plumbizincicola can mobilize non-labile metal for uptake but the residual metal cannot be removed. The results indicate that phytoextraction significantly decreases metal availability by reducing metal pool sizes and/or desorption rates and that S. plumbizincicola plays an important role in the mobilization of less active metal fractions during repeated phytoextraction.
显示更多 [+] 显示较少 [-]