细化搜索
结果 531-540 的 7,351
Microplastic reorganization in urban river before and after rainfall 全文
2022
Microplastics (MPs) present in non-negligible amounts in urban environments, where urban rivers serve as important transport channels for MPs. However, the footprint of MPs in urban rivers under the influence of natural and anthropogenic factors is poorly understood. This study investigated the MPs organization, stability and pollution risk before and after rainfall in the Qing River, Beijing. Rainfall potentially diluted the MPs abundance, attributed to opening of barrages and increase of flow velocity. The proportion of small-sized MPs (SMPs, 48–300 μm) decreased slightly, whereas that of normal-sized MPs (NMPs, 300–1000 μm) and large-sized MPs (LMPs, > 1000 μm) increased. However, SMPs dominantly presented in the Qing River before and after rainfall. Polyethylene terephthalate (PET), polypropylene (PP), polyethylene (PE), and polystyrene (PS) were main polymers observed in the Qing River. The proportions of PET and PS decreased, while PP and PE increased after rainfall. The main types of MPs introduced by stormwater were PP and PE. The elevated MP diversity integrated index after rain suggested that rainfall enriched the sources of MPs. Rainfall reduced the stability and fragmentation of MPs owing to the introduction of large debris. NMPs and LMPs were susceptible to further fragmentation and downsizing, implying that MPs abundance in the Qing River tended to rise and SMPs might enriched. In addition, alteration of MPs fragmentation and stability reflected that the likely input source was wastewater treatment plant and atmospheric deposition before rainfall, whereas soil and road dust were possible sources after rain. The pollution risk assessment defined the MPs pollution risk of Qing River as low level and decreased after rainfall. This study demonstrated that rainfall substantially influences MPs organization in urban river and provides empirical support for MPs environmental behavior under influence of natural and anthropogenic factors.
显示更多 [+] 显示较少 [-]Adaptive resilience of roadside trees to vehicular emissions via leaf enzymatic, physiological, and anatomical trait modulations 全文
2022
Unplanned urbanization and heavy automobile use by the rapidly growing population contribute to a variety of environmental issues. Roadside plants can mitigate air pollution by modifying their enzymatic activity, physiological and anatomical traits. Plant enzymes, physiological and anatomical traits play an important role in adaptation and mitigation mechanisms against vehicular emissions. There is a significant gap in understanding of how plant enzymes and anatomical traits respond or how they participate in modulating the effect of vehicular emissions/air pollution. Modulation of leaf anatomical traits is also useful in regulating plant physiological behavior. Hence, the present study was conducted to evaluate the effects of vehicular pollution on the enzymatic activity, physiological, and anatomical traits of plant species that grow in forests (S1) and alongside roads (S2-1 km away from the S1 site) during different seasons. The present study examines four commonly found roadside tree species i.e. Grevillea robusta, Cassia fistula, Quercus leucotrichophora and Cornus oblonga. The study found that the activities of catalase and phenylalanine ammonium enzymes were higher in G. robusta species of roadside than control site (S1). Non-enzymatic antioxidants such as flavonoid and phenol were also found in higher concentrations in roadside tree species during the summer season. However, the measured values of physiological traits were higher in Q. leucotrichophora tree species of S1 during the summer season. When compared to the other species along the roadside, Q. leucotrichophora had the highest number of stomata and epidermal cells during the summer season. Hence, we found that tree species grown along the roadside adapted towards vehicular emissions by modulating their enzymatic, physiological, and anatomical traits to mitigate the effect of air pollution.
显示更多 [+] 显示较少 [-]Degradation of polylactic acid/polybutylene adipate films in different ratios and the response of bacterial community in soil environments 全文
2022
Biodegradable plastic mulch film (BDM) is an environmentally friendly alternative to conventional polyethylene mulch, and has been growingly used in agriculture. However, practical degradation performance of BDM, especially the widely used type of blended polylactic acid (PLA)/polybutylene adipate (PBAT) in different ratios, and microbial alteration in soil environments, remain largely unrevealed. In this study, four types of BDM blended with 40–80% PLA and 20–60% PBAT were comparatively investigated through microcosm soil incubation experiments for 105 days, and combined with conditions of different soil moisture or pH. Microbiome within film-surrounding soil were assayed using 16 S rRNA high-throughput sequencing. Results showed a trend of increasing degradation efficiency with the increase of PLA proportion, and 70% PLA and 30% PBAT group presented the highest weight loss rate, i.e., 60.16 ± 5.86%. In addition, degradation and aging of PLA/PBAT varied among different soil moisture and pH values. A moderate moisture, i.e., 60% and a neutral pH7.0 caused significantly high degradation efficiency compared to other moisture or pH conditions. Moreover, bacterial abundance and community structure in the surrounding soil were related to soil moisture and pH. PLA/PBAT incubation treatment induced a remarkable increase in abundance of degradation-related species Pseudomonas and Sphingomonas. Bacterial richness and diversity in soil correspondingly respond to ratio-different PLA/PBAT's degradation under moisture/pH-different conditions through a redundancy analysis. Altogether, these findings indicate that practical degradation of PLA/PBAT film is closely related to soil environments and bacterial community. It is significant for the application of biodegradable plastics in agriculture on the perspective of soil sustainability.
显示更多 [+] 显示较少 [-]Effects of biochar addition on the fate of ciprofloxacin and its associated antibiotic tolerance in an activated sludge microbiome 全文
2022
Oh, Seungdae | Kim, Youngjun | Choi, Donggeon | Park, Ji Won | Noh, Jin Hyung | Chung, Sang-Yeop | Maeng, Sung Kyu | Cha, Chang-Jun
This study investigated the effects of adding biochar (BC) on the fate of ciprofloxacin (CIP) and its related antibiotic tolerance (AT) in activated sludge. Three activated sludge reactors were established with different types of BC, derived from apple, pear, and mulberry tree, respectively, and one reactor with no BC. All reactors were exposed to an environmentally relevant level of CIP that acted as a definitive selective pressure significantly promoting AT to four representative antibiotics (CIP, ampicillin, tetracycline, and polymyxin B) by up to two orders of magnitude. While CIP removal was negligible in the reactor without BC, the BC-dosed reactors effectively removed CIP (70–95% removals) through primarily adsorption by BC and biodegradation/biosorption by biomass. The AT in the BC-added reactors was suppressed by 10–99%, compared to that without BC. The BC addition played a key role in sequestering CIP, thereby decreasing the selective pressure that enabled the proactive prevention of AT increase. 16S rRNA gene sequencing analysis showed that the BC addition alleviated the CIP-mediated toxicity to community diversity and organisms related to phosphorous removal. Machine learning modeling with random forest and support vector models using AS microbiome data collectively pinpointed Achromobacter selected by CIP and strongly associated with the AT increase in activated sludge. The identification of Achromobacter as an important AT bacteria revealed by the machine learning modeling with multiple models was also validated with a linear Pearson's correlation analysis. Overall, our study highlighted Achromobacter as a potential useful sentinel for monitoring AT occurring in the environment and suggested BC as a promising additive in wastewater treatment to improve micropollutant removal, mitigate potential AT propagation, and maintain community diversity against toxic antibiotic loadings.
显示更多 [+] 显示较少 [-]Being applied at rice or wheat season impacts biochar's effect on gaseous nitrogen pollutants from the wheat growth cycle 全文
2022
Zhang, Yu | Jeyakumar, Paramsothy | Xia, Changlei | Lam, Su Shiung | Jiang, Jiang | Sun, Haijun | Shi, Weiming
Biochar (BC) application to agricultural soil can impact two nitrogen (N) gases pollutants, i.e., the ammonia (NH₃) and nitrous oxide (N₂O) losses to atmospheric environment. Under rice-wheat rotation, applied at which growth cycle may influence the aforementioned effects of BC. We conducted a soil column (35 cm in inner diameter and 70 cm in height) experiment to evaluate the responses of wheat N use efficiency (NUE), NH₃ volatilization, and N₂O emission from wheat season to biochar applied at rice (R) or wheat (W) growth cycle, meanwhile regarding the effect of inorganic fertilizer N input rate, i.e., 72, 90, and 108 kg ha⁻¹ (named N72, N90, and N108, respectively). The results showed that BC application influenced the wheat growth and grain yield. In particular, BC applied at rice season increased the wheat grain yield when receiving 90 and 108 kg N ha⁻¹. The improved wheat grain yield was attributed to that N90 + BC(R) and N108 + BC(R) enhanced the wheat NUE by 53.8% and 52.8% over N90 and N108, respectively. More N input led to higher NH₃ volatilization and its emission factor. Interestingly, 19.7%–34.0% lower NH₃ vitalizations were recorded under treatments with BC applied in rice season, compared with the treatments only with fertilizer N. BC applied at rice season exerted higher efficiency on mitigating N₂O emission than that applied at wheat season under three N input rates, i.e., 60.5%–77.6% vs 29.8%–34.8%. Overall, considering the crop yield and global warming potential resulting from NH₃ volatilization and N₂O emission of wheat season, N90 + BC(R) is recommended. In conclusion, farmers should consider the application time and reduce inorganic fertilizer N rate when using BC.
显示更多 [+] 显示较少 [-]Recyclable aminophenylboronic acid modified bacterial cellulose microspheres for tetracycline removal: Kinetic, equilibrium and adsorption performance studies for hoggery sewer 全文
2022
Zhang, Gengrong | Li, Linhan | Zhou, Guoqing | Lin, Zhiyang | Wang, Jun | Wang, Gaoxue | Ling, Fei | Liu, Tianqiang
Significant concerns have been raised regarding to the pollution of antibiotics in recent years due to the abuse of antibiotics and their high detection rate in water. Herein, a novel super adsorbent, boronic acid-modified bacterial cellulose microspheres with a size of 415 μm in diameter was prepared through a facile water-in-oil emulsion method. The adsorbent was characterized by atomic force microscopy, scanning electron microscopy, and fourier transform infrared spectroscopy analyses to confirm its properties. The microspheres were applied as packing materials for the adsorption of tetracycline (TC) from an aqueous solution and hoggery sewer via the reversible covalent interaction between cis-diol groups in TC molecules and the boronic acid ligand. TC adsorption performance had been systemically investigated under various conditions, including the pH, temperature, TC concentration, contact time, and ionic strength. Results showed that the adsorption met pseudo-second-order, Elovich kinetic model and Sips, Redlich-Peterson isothermal models. And the adsorption process was spontaneous and endothermic, with the maximum TC adsorption capacity of 614.2 mg/g. After 18 adsorption-desorption cycles, the adsorption capacity remained as high as 84.5% compared with their original adsorption capacity. Compared with other reported adsorption materials, the microspheres had high adsorption capacity, a simple preparation process, and excellent recovery performance, demonstrating great potential in application on TC removal for water purification and providing new insights into the antibiotic's adsorption behavior of bacterial cellulose-based microspheres.
显示更多 [+] 显示较少 [-]An inevitable but underestimated photoaging behavior of plastic waste in the aquatic environment: Critical role of nitrate 全文
2022
Li, Fengjie | Zhai, Xue | Yao, Mingxuan | Bai, Xue
Photoaging is an important reaction for waste plastics in the aquatic environment and plays a key role in the lifetime of plastics. Nevertheless, when natural photosensitive substances such as nitrate participate in this process, the physiochemical changes in plastics and the corresponding reaction mechanisms are not well-understood. In this work, the photochemical behavior of polyethylene terephthalate (PET) bottles in deionized water and nitrate solution was systematically investigated under ultraviolet (UV) irradiation. The analyses of the surface physicochemical properties of the photoaged PET bottles indicated that, after 20 days of photo-irradiation, the presence of nitrate reduced the contact angle from 69.8 ± 0.9° to 60.0 ± 0.3°, and increased the O/C ratio from 0.23 to 0.32, respectively. The leaching rate of dissolved organic carbon (DOC), which was 0.0193 mg g⁻¹·day⁻¹ in nitrate solution, was twice that of 0.00941 mg g⁻¹·day⁻¹ in deionized water. Furthermore, fluorescence spectroscopy revealed that the increasing DOC had aromatic rings with hydroxyl on the side-chain formed after UV irradiation. The positive effect of nitrate on the degradation of PET bottles was mainly through the generation of hydroxyl radicals that were produced through the photolysis of nitrate. In addition, two-dimensional correlation spectroscopy analysis showed that the chain scission of PET plastics could be initiated by nitrate-induced ·OH attacking the carbon-oxygen bonds instead of forming peroxides with oxygen. This work elucidates the mechanism of photodegradation of plastics that was induced by nitrate and highlights the important role of natural photosensitive substances in the photoaging process of plastics.
显示更多 [+] 显示较少 [-]Essence of hydroxyapatite in defluoridation of drinking water: A review 全文
2022
Rathnayake, Anushka | Hettithanthri, Oshadi | Sandanayake, Sandun | Mahatantila, Kushani | Rajapaksha, Anushka Upamali | Vithanage, Meththika
Hydroxyapatite (HAP) is an easily synthesizable, low-cost mineral that has been recognized as a potential material for fluoride removal. Some of the synthesis methods of HAP are quite straightforward and cost-effective, while some require sophisticated synthesis techniques under advanced laboratory conditions. This review assesses the physicochemical characteristics of HAP and HAP-based composites produced via various techniques, their recent development in defluoridation and most importantly, the fluoride removal performances. For the first time, fluoride removal performances of HAP and HAP composites are compared based on partition coefficient (KD) instead of maximum adsorption capacity (Qₘₐₓ), which is significantly influenced by initial loading concentrations. Novel HAP tailored composites exhibit comparatively high KD values indicating the excellent capability of fluoride removal along with specific surface areas above 120 m²/g. HAP doped with aluminium complexes, HAP doped ceramic beads, HAP-pectin nanocomposite and HAP-stilbite nanocomposite, HAP decorated nanotubes, nanowires and nanosheets demonstrated high Qₘₐₓ and KD. The secret of HAP is not the excellent fluoride removal performances but best removal at neutral and near-neutral pH, which most of the defluoridation materials are incapable of, making them ideal adsorbents for drinking water treatment. Multiple mechanisms including physical surface adsorption, ion-exchange, and electrostatic interactions are the main mechanisms involved in defluoridation. Further research work must be focused on upscaling HAP-based composites for defluoridation on a commercial scale.
显示更多 [+] 显示较少 [-]Risk assessment and dose-effect of co-exposure to benzene, toluene, ethylbenzene, xylene, and styrene (BTEXS) on pulmonary function: A cross-sectional study 全文
2022
Liao, Qilong | Zhang, Yan | Ma, Rui | Zhang, Zhaorui | Ji, Penglei | Xiao, Minghui | Du, Rui | Liu, Xin | Cui, Ying | Xing, Xiumei | Liu, Lili | Dang, Shanfeng | Deng, Qifei | Xiao, Yongmei
Inhalation is the most frequent route and the lung is the primary damaged organ for human exposure to benzene, toluene, ethylbenzene, xylene, and styrene (BTEXS). However, there is limited information on the risk and dose-effect of the BTEXS mixture on pulmonary function, particularly the overall effect. We conducted a cross-sectional study in a petrochemical plant in southern China. Spirometry and cumulative exposure dose (CED) of BTEXS were used to measure lung function and exposure levels for 635 workers in 2020, respectively. Forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV₁) were tested and interpreted as percentages to predicted values [FVC or FEV₁% predicted], and FEV₁ to FVC ratio [FEV₁/FVC (%)]. We found the reduction in FVC% predicted and the risk of lung ventilation dysfunction (LVD) and its two subtypes (mixed and restrictive ventilation dysfunction, MVD, and MVD) were significantly associated with BTEXS individuals. In addition, pulmonary function damage associated with BTEXS was modified by the smoking status and age. Generalized weighted quantile sum (gWQS) regressions were used to estimate the overall dose-effect on lung function damage induced by the BTEXS mixture. Our results show wqs, an index of weighted quartiles for BTEXS, was potentially associated with the reduction in FVC and FEV₁% predicted with the coefficients [95% confidence intervals (CI)] between −1.136 (−2.202, −0.070) and −1.230 (−2.265, −0.195). Odds ratios (ORs) and 95% CIs for the wqs index of LVD, MVD, and RVD were 1.362 (1.129, 1.594), 1.323 (1.084, 1.562), and 1.394 (1.096, 1.692), respectively. Furthermore, xylene, benzene, and toluene in the BTEXS mixture potentially contribute to the development of lung function impairment. Our novel findings demonstrated the dose-response relationships between pulmonary function impairment and the BTEXS mixture and disclosed the potential key pollutants in the BTEXS mixture.
显示更多 [+] 显示较少 [-]Metabolic syndrome and pesticides: A systematic review and meta-analysis 全文
2022
Lamat, Hugo | Sauvant-Rochat, Marie-Pierre | Tauveron, Igor | Bagheri, Reza | Ugbolue, Ukadike C. | Maqdasi, Salwan | Navel, Valentin | Dutheil, Frédéric
The relation between pesticides exposure and metabolic syndrome (MetS) has not been clearly identified. Performing a systematic review and meta-analysis, PubMed, Cochrane Library, Embase, and ScienceDirect were searched for studies reporting the risk of MetS following pesticides exposure and their contaminants. We included 12 studies for a total of 6789 participants, in which 1981 (29.1%) had a MetS. Overall exposure to pesticides and their contaminants increased the risk of MetS by 30% (95CI 22%–37%). Overall organochlorine increased the risk of MetS by 23% (14–32%), as well as for most types of organochlorines: hexachlorocyclohexane increased the risk by 53% (28–78%), hexachlorobenzene by 40% (0.01–80%), dichlorodiphenyldichloroethylene by 22% (9–34%), dichlorodiphenyltrichloroethane by 28% (5–50%), oxychlordane by 24% (1–47%), and transnonchlor by 35% (19–52%). Sensitivity analyses confirmed that overall exposure to pesticides and their contaminants increased the risk by 46% (35–56%) using crude data or by 19% (10–29%) using fully-adjusted model. The risk for overall pesticides and types of pesticides was also significant with crude data but only for hexachlorocyclohexane (36% risk increase, 17–55%) and transnonchlor (25% risk increase, 3–48%) with fully-adjusted models. Metaregressions demonstrated that hexachlorocyclohexane increased the risk of MetS in comparison to most other pesticides. The risk increased for more recent periods (Coefficient = 0.28, 95CI 0.20 to 0.37, by year). We demonstrated an inverse relationship with body mass index and male gender. In conclusion, pesticides exposure is a major risk factor for MetS. Besides organochlorine exposure, data are lacking for other types of pesticides. The risk increased with time, reflecting a probable increase of the use of pesticides worldwide. The inverse relationship with body mass index may signify a stockage of pesticides and contaminants in fat tissue.
显示更多 [+] 显示较少 [-]