细化搜索
结果 551-560 的 7,282
Occurrence and distribution of persistent organic pollutants in the liver and muscle of Atlantic blue sharks: Relevance and health risks 全文
2022
Muñoz-Arnanz, Juan | Bartalini, Alice | Alves, Luís | Lemos, Marco FL. | Novais, Sara C. | Jiménez, Begoña
Occurrence and distribution of persistent organic pollutants in the liver and muscle of Atlantic blue sharks: Relevance and health risks 全文
2022
Muñoz-Arnanz, Juan | Bartalini, Alice | Alves, Luís | Lemos, Marco FL. | Novais, Sara C. | Jiménez, Begoña
Blue shark score among the most abundant, widely distributed and worldwide consumed elasmobranchs. In this work contents of PCBs, PCDD/Fs and PBDEs were studied by means of GC-HRMS in muscle and liver of sixty blue sharks from the North East Atlantic sampled in 2019. Concentrations relatively similar were found for PCBs and PCDD/Fs in comparison with those in Atlantic specimens from the same area sampled in 2015. In contrast, PBDE loads doubled, likely mirroring the increased environmental presence of these pollutants. This, together with the different congener profiles reported for the same species in other geographical areas, highlighted the blue shark's potential as bioindicator of the degree and fingerprints of regional pollution by POPs. Interesting dissimilarities between muscle and liver concentrations were detected, most likely ascribed to distinct toxicokinetics involved for the different pollutants. Whereas most POPs preferentially accumulated in liver, some did the opposite in muscle. BDE-209 was the most prominent example, being almost negligible its presence in liver (0.3%) while accounting for ca. 14% of the total PBDE content in muscle. Different findings in this regard described for other shark species call for focused research to ascertain the role of the species in this apparent favored metabolization of BDE-209 in the liver. From a consumption perspective, the concentrations found in muscle -the most relevant part in the human diet-for PCBs and dioxin-like POPs were below the EU maximum allowed levels in foodstuff. Conversely, in liver about 58% and 78% of samples overpassed the European levels for tolerable intake of i-PCBs and dioxin POPs, respectively. Concentrations of PBDEs exceeded EQS (0.0085 ng/g w.w.) established by the European Water Framework Directive in 100% and 92% of liver and muscle samples, respectively, which adds to the open debate of such as a reduce value for this current EQS.
显示更多 [+] 显示较少 [-]Occurrence and distribution of persistent organic pollutants in the liver and muscle of Atlantic blue sharks: Relevance and health risks
Watershed urbanization enhances the enrichment of pathogenic bacteria and antibiotic resistance genes on microplastics in the water environment 全文
2022
Li, Hu | Luo, Qiuping | Zhao, Sha | Zhao, Peiqiang | Yang, Xiaoru | Huang, Qiansheng | Su, Jianqiang
Microplastics (MPs) serve as vectors for microorganisms and antibiotic resistance genes (ARGs) and contribute to the spread of pathogenic bacteria and ARGs across various environments. Patterns of microbial communities and ARGs in the biofilm on the surface of MPs, also termed as plastisphere, have become an issue of global concern. Although antibiotic resistome in the plastisphere has been detected, how watershed urbanization affects patterns of potential pathogens and ARGs in the microplastic biofilms is still unclear. Here, we compared the bacterial communities, the interaction between bacterial taxa, pathogenic bacteria, and ARGs between the plastisphere and their surrounding water, and revealed the extensive influence of urbanization on them. Our results showed that bacterial communities and interactions in the plastisphere differed from those in their surrounding water. Microplastics selectively enriched Bacteroidetes from water. In non-urbanized area, the abundance of Oxyphotobacteria was significantly (p < 0.05) higher in plastisphere than that in water, while α-Proteobacteria was significantly (p < 0.05) higher in plastisphere than those in water of urbanized area. Pathogenic bacteria, ARGs, and mobile genetic elements (MGEs) were significantly (p < 0.05) higher in the urbanized area than those in non-urbanized area. MPs selectively enriched ARG-carrying potential pathogens, i.e., Klebsiella pneumoniae and Enterobacter cloacae, and exhibited a distinct effect on the relative abundance of ARG and pathogens in water with different urbanization levels. We further found ARGs were significantly correlated to MGEs and pathogenic bacteria. These results suggested that MPs would promote the dissemination of ARGs among microbes including pathogenic bacteria, and urbanization would affect the impact of MPs on microbes, pathogens, and ARGs in water. A high level of urbanization could enhance the enrichment of pathogens and ARGs by MPs in aquatic systems and increase microbial risk in aquatic environments. Our findings highlighted the necessity of controlling the spread of ARGs among pathogens and the usage of plastic products in ecosystems of urban areas.
显示更多 [+] 显示较少 [-]Ozone pollution in the plate and logistics capital of China: Insight into the formation, source apportionment, and regional transport 全文
2022
Wang, Gang | Zhu, Zhongyi | Liu, Zhonglin | Liu, Xiaoyu | Kong, Fanhua | Nie, Liman | Gao, Wenkang | Zhao, Na | Lang, Jianlei
As the logistics and plate capital of China, the sources and regional transport of O₃ in Linyi are different from those in other cities because of the significant differences in industrial structure and geographical location. Twenty-five ozone pollution episodes (OPEs, 52 days) were identified in 2021, with a daily maximum 8-h moving average O₃ concentration (O₃₋MDA₈) of 184.5 ± 22.5 μg/m³. Oxygenated volatile organic compounds (OVOCs) and aromatics were the dominant contributors to ozone formation potential (OFP), with contributions of approximately 23.5–52.7% and 20.0–40.8%, respectively, followed by alkenes, alkanes, and alkynes. Formaldehyde, an OVOC with high concentrations emitted from the plate industry and vehicles, contributed the most to OFP (22.7 ± 5.5%), although formaldehyde concentrations only accounted for 9.4 ± 2.7% of the total non-methane hydrocarbon (NMHC) concentrations. The source apportionment results indicated that the plate industry was the dominant O₃ contributor (27.0%), followed by other sources (21.6%), vehicle-related sources (18.0%), solvent use (16.9%), liquefied petroleum gas (LPG)/natural gas (NG) (8.8%), and combustion sources (7.7%). Therefore, there is an urgent need to control the plating industry in Linyi to mitigate O₃ pollution. The backward trajectory, potential source contribution function (PSCF), and concentration weighted trajectory (CWT) models were used to identify the air mass pathways and potential source areas of air pollutants during the OPEs. O₃ pollution was predominantly affected by air masses that originated from eastern and local regions, while trajectories from the south contained the highest O₃ concentrations (207.0 μg/m³). The potential source area was from east and south Linyi during the OPEs. Therefore, it is critical to implement regional joint prevention and control measures to lower O₃ concentrations.
显示更多 [+] 显示较少 [-]Effects of urbanization on the distribution of polycyclic aromatic hydrocarbons in China's estuarine rivers 全文
2022
Li, Xiaoqian | Lü, Yonglong | Shi, Yajuan | Wang, Pei | Cao, Xianghui | Cui, Haotian | Zhang, Meng | Du, Di
Estuarine rivers are the primary medium for transporting pollutants from human activities to the ocean. Polycyclic aromatic hydrocarbons (PAHs) have substantial toxicity and pose a significant risk to ecosystem and human health. However, the influences of urbanization on their distribution, particularly in China where urbanization is occurring rapidly, remain unclear. This study took three coastal economic circles of China as research areas, and investigated PAHs (16 species) in the estuarine river water. 95.9% of the sampling sites demonstrated moderate PAHs pollution and moderate ecological risk. Coal and petroleum combustion was the primary source of PAHs, but the source composition varied among the regions. Air pollution caused by energy emissions, particularly carbon emissions, has a critical and differential effect on PAHs distribution and deposition. With the increasing use of clean energy, PAHs emissions have been gradually reduced, which provides an effective option for PAHs reduction in a rapidly urbanizing coastal region.
显示更多 [+] 显示较少 [-]Biodegradation of 4-nitroaniline by novel isolate Bacillus sp. strain AVPP64 in the presence of pesticides 全文
2022
Silambarasan, Sivagnanam | Cornejo, Pablo | Vangnai, Alisa S.
In this study, Bacillus sp. strain AVPP64 was isolated from diuron-contaminated soil. It showed 4-nitroaniline (4-NA) degradation, pesticide tolerance, and self-nutrient integration via nitrogen (N)-fixation and phosphate (P)-solubilization. The rate constant (k) and half-life period (t₁/₂) of 4-NA degradation in the aqueous medium inoculated with strain AVPP64 were observed to be 0.445 d⁻¹ and 1.55 d, respectively. Nevertheless, in the presence of chlorpyrifos, profenofos, atrazine and diuron pesticides, strain AVPP64 degraded 4-NA with t₁/₂ values of 2.55 d, 2.26 d, 2.31 d and 3.54 d, respectively. The strain AVPP64 fixed 140 μg mL⁻¹ of N and solubilized 103 μg mL⁻¹ of P during the presence of 4-NA. In addition, strain AVPP64 produced significant amounts of plant growth-promoting metabolites like indole 3-acetic acid, siderophores, exo-polysaccharides and ammonia. In the presence of 4-NA and various pesticides, strain AVPP64 greatly increased the growth and biomass of Vigna radiata and Crotalaria juncea plants. These results revealed that Bacillus sp. strain AVPP64 can be used as an inoculum for bioremediation of 4-NA contaminated soil and sustainable crop production even when pesticides are present.
显示更多 [+] 显示较少 [-]Pinecone-derived magnetic porous hydrochar co-activated by KHCO3 and K2FeO4 for Cr(VI) and anthracene removal from water 全文
2022
Qu, Jianhua | Liu, Yang | Meng, Jiao | Bi, Fuxuan | Ma, Shouyi | Zhang, Guangshan | Wang, Yifan | Tao, Yue | Zhao, Jiang | Zhang, Ying
Herein, magnetic porous pinecone-derived hydrochar (MPHCMW) co-activated by KHCO₃ and K₂FeO₄ through one-step microwave-assisted pyrolysis was innovatively synthesized for hexavalent chromium (Cr(VI)) and anthracene (ANT) removal from water. The analyses of characterization consequences and co-activation mechanisms not merely proved the high specific surface area (703.97 m²/g) and remarkable microporous structures of MPHCMW caused by the synergistic chemical activation of KHCO₃ and K₂FeO₄, but also testified successful loading of Fe⁰ and Fe₃O₄ on MPHCMW by the process of carbothermal reduction between K₂FeO₄ and carbon matrix of hydrochar. The resultant MPHCMW possessed pH-dependence for Cr(VI), while adsorption for ANT was hardly impacted by the pH of solution. Moreover, the adsorption processes of MPHCMW could attain equilibrium within 60 min for Cr(VI) and 30 min for ANT with multiple kinetics, and the corresponding adsorption capacity for Cr(VI) and ANT was 128.15 and 60.70 mg/g, respectively. Additionally, the adsorption percentages of MPBCMW for Cr(VI)/ANT was maintained at 87.87/82.64% after three times of adsorption-desorption cycles. Furthermore, pore filling, complexation, electrostatic interaction, reduction and ion exchange were testified to enhance the removal of Cr(VI), while the ANT removal was achieved via π-π stacking, complexation, pore filling and hydrogen bonding force.
显示更多 [+] 显示较少 [-]Nitrogen isotopic composition of NOx from residential biomass burning and coal combustion in North China 全文
2022
Zong, Zheng | Shi, Xiaolan | Sun, Zeyu | Tian, Chongguo | Li, Jun | Fang, Yunting | Gao, Huiwang | Zhang, Gan
Stable nitrogen isotope (δ¹⁵N) technology has often been used as a powerful tool to separate nitrogen oxides (NOₓ) produced by residential combustion (i.e., biomass burning and coal combustion) from other sources. However, the insufficient measurement of δ¹⁵N-NOₓ fingerprints of these emissions limits its application, especially in North China where residential emissions are significant. This study conducted combustion experiments to determine the δ¹⁵N-NOₓ of typical residential fuels in North China, including ten biomass fuels and five types of coal. The results showed that the δ¹⁵N of biomass varied between −6.9‰ and 2.3‰, which was lower than the δ¹⁵N of residential coal (−0.2‰–4.6‰). After combustion, the δ¹⁵N of biomass residues increased greatly, while that of coal residues showed no significant upward trend (p > 0.05). The δ¹⁵N-NOₓ produced by biomass burning ranged from −5.6‰ to 3.2‰ (−0.4‰ ± 2.4‰), showing a significant linear relation with δ¹⁵N-biomass. Comparatively, the δ¹⁵N-NOₓ derived from residential coal combustion was much higher (16.1‰ ± 3.3‰), ranging from 11.7‰ to 19.7‰. It was not well correlated with δ¹⁵N-coal, and only slightly lower than the estimated δ¹⁵N-NOₓ of industrial coal combustion (17.9‰, p > 0.05). These observations indicate that the δ¹⁵N-NOₓ of residential coal combustion is a result of the mixture of thermal- and fuel-released NOₓ. Based on the isotopic characteristics observed in this study, we analyzed the reported δ¹⁵N-NOₓ, and provided more statistically robust δ¹⁵N-NOₓ distributions for biomass burning (1.3‰ ± 4.3‰; n = 101) and coal combustion (17.9‰ ± 3.1‰; n = 26), which could provide guidance for scientific studies aiming to quantify the origin of NOₓ in North China and in other regions.
显示更多 [+] 显示较少 [-]Comprehensive characterization of halogenated flame retardants and organophosphate esters in settled dust from informal e-waste and end-of-life vehicle processing sites in Vietnam: Occurrence, source estimation, and risk assessment 全文
2022
Hoang, Anh Quoc | Karyu, Ryogo | Tue, Nguyen Minh | Goto, Akitoshi | Tuyen, Le Huu | Matsukami, Hidenori | Suzuki, Go | Takahashi, Shin | Viet, Pham Hung | Kunisue, Tatsuya
Information about the co-occurrence of halogenated flame retardants (HFRs) and organophosphate esters (OPEs) in the environment of informal waste processing areas is still limited, especially in emerging and developing countries. In this study, OPEs and HFRs including polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs), and chlorinated flame retardants (CFRs) were determined in settled dust from Vietnamese e-waste recycling (WR) and vehicle processing (VP) workshops. Pollutant concentrations decreased in the order: OPEs (median 1500; range 230–410,000 ng/g) ≈ PBDEs (1200; 58–250,000) > NBFRs (140; not detected – 250,000) > CFRs (13; 0.39–2200). HFR and OPE levels in the WR workshops for e-waste and obsolete plastic were significantly higher than in the VP workshops. Decabromodiphenyl ether and decabromodiphenyl ethane are major HFRs, accounting for 60 ± 26% and 25 ± 29% of total HFRs, respectively. Triphenyl phosphate, tris(2-chloroisopropyl) phosphate, and tris(1,3-dichloroisopropyl) phosphate dominated the OPE profiles, accounting for 30 ± 25%, 25 ± 16%, and 24 ± 18% of total OPEs, respectively. The OPE profiles differed between WR and VP dust samples, implying different usage patterns of these substances in polymer materials for electric/electronic appliance and automotive industries. Human health risk related to dust-bound HFRs and OPEs in the study areas was low.
显示更多 [+] 显示较少 [-]DNA metabarcoding reveals human impacts on macroinvertebrate communities in polluted headwater streams: Evidence from the Liao River in northeast China 全文
2022
Li, Feilong | Wang, Shuping | Zhang, Yuan | Zhang, Nan | Cai, Yanpeng | Yang, Zhifeng
Headwater streams are a hotspot of freshwater biodiversity, carrying indispensable resource pools of aquatic species. However, up to now, there remain many challenges to accurately and efficiently characterize the responses of this vulnerable ecosystem to human-induced changes. Here, we collected macroinvertebrate data from 12 different headwater streams in the Liao River of northeast China by DNA metabarcoding approach, to reveal biodiversity changes and ecological thresholds affected by human beings. Our data showed that the community composition and structure of headwater streams had unique and significant differences under human impacts, and 5-day biological oxygen demand (BOD₅) and ammonia nitrogen (NH₃–N) were the key variables explaining the variation in community structure. Although α diversity had a unimodal relationship with nutrients and organic loads, β diversity and its turnover component (species replacement) increased significantly. In addition, 22 and 33 indicative taxa were identified to have significant negative responses to BOD₅ and NH₃–N, respectively, and the change points derived from Threshold Indicator Taxa Analysis (TITAN) for the negative response of their frequency and abundance were BOD₅ >3.42 mg/L and NH₃–N >0.14 mg/L. Overall, this study reveals the biodiversity changes in headwater streams from the aspects of α and β diversity, and also determines the thresholds of BOD₅ and NH₃–N pollutants for one reach at one date from 12 headwater streams, suggesting the potential of DNA metabarcoding approach for threshold analyses in headwater streams.
显示更多 [+] 显示较少 [-]PM2.5 drives bacterial functions for carbon, nitrogen, and sulfur cycles in the atmosphere 全文
2022
Liu, Huan | Hu, Zhichao | Zhou, Meng | Zhang, Hao | Zhang, Xiaole | Yue, Yang | Yao, Xiangwu | Wang, Jing | Xi, Chuanwu | Zheng, Ping | Xu, Xiangyang | Hu, Baolan
Airborne bacteria may absorb the substance from the atmospheric particles and play a role in biogeochemical cycling. However, these studies focused on a few culturable bacteria and the samples were usually collected from one site. The metabolic potential of a majority of airborne bacteria on a regional scale and their driving factors remain unknown. In this study, we collected particulates with aerodynamic diameter ≤2.5 μm (PM₂.₅) from 8 cities that represent different regions across China and analyzed the samples via high-throughput sequencing of 16S rRNA genes, quantitative polymerase chain reaction (qPCR) analysis, and functional database prediction. Based on the FAPROTAX database, 326 (80.69%), 191 (47.28%) and 45 (11.14%) bacterial genera are possible to conduct the pathways of carbon, nitrogen, and sulfur cycles, respectively. The pathway analysis indicated that airborne bacteria may lead to the decrease in organic carbon while the increase in ammonium and sulfate in PM₂.₅ samples, all of which are the important components of PM₂.₅. Among the 19 environmental factors studied including air pollutants, meteorological factors, and geographical conditions, PM₂.₅ concentration manifested the strongest correlations with the functional genes for the transformation of ammonium and sulfate. Moreover, the PM₂.₅ concentration rather than the sampling site will drive the distribution of functional genera. Thus, a bi-directional relationship between PM₂.₅ and bacterial metabolism is suggested. Our findings shed light on the potential bacterial pathway for the biogeochemical cycling in the atmosphere and the important role of PM₂.₅, offering a new perspective for atmospheric ecology and pollution control.
显示更多 [+] 显示较少 [-]