细化搜索
结果 561-570 的 7,214
Early life PCB138 exposure induces kidney injury secondary to hyperuricemia in male mice
2022
Ruan, Fengkai | Liu, Changqian | Hu, Weiping | Ruan, Jinpeng | Ding, Xiaoyan | Zhang, Lu | Yang, Chunyan | Zuo, Zhenghong | He, Chengyong | Huang, Jiyi
Polychlorinated biphenyls (PCBs) are a class of persistent organic pollutants (POPs) that have adverse effects on human health. However, the long-term health effects and potential mechanism of neonatal exposure to PCBs are still unclear. In this study, nursing male mice exposed to PCB138 at 0.5, 5, and 50 μg/kg body weight (bw) from postnatal day (PND) 3 to PND 21 exhibited increased serum uric acid levels and liver uric acid synthase activity at 210 days of age. We also found an increased kidney somatic index in the 50 μg/kg group and kidney fibrosis in the 5 and 50 μg/kg groups. Mechanistically, PCB138 induced mitochondrial dysfunction and endoplasmic reticulum (ER) stress, which might have led to inflammatory responses, such as activation of the NF-κB (nuclear factor kappa-B) and NLRP3 (NOD-like receptor protein 3) pathways. The inflammatory response might regulate renal fibrosis and hypertrophy. In summary, this study reports a long-term effect of neonatal PCB exposure on uric acid metabolism and secondary nephrotoxicity and clarifies the underlying mechanism. Our work also indicates that early life pollutant exposure may be an important cause of diseases later in life.
显示更多 [+] 显示较少 [-]Assessment on the source of geochemical anomalies in the sediments of the Changjiang river (China), using a modified enrichment factor based on multivariate statistical analyses
2022
Dominech, Salvatore | Albanese, Stefano | Guarino, Annalise | Yang, Shouye
Rivers can be sinks for potential toxic elements (PTEs) inputted in their systems by both natural and anthropic processes. Many indices have been proposed to assess the contamination degree of sediments and the environmental conditions of surficial water bodies. Above all, enrichment factor (EF) is the most used tool, but also it is the most debated for its limitations. The need for a reference element and for a background/baseline composition makes the EF method dependent on the researcher's expertise, implying that its repeatability may not be granted. Starting from the awareness that geochemical processes, bringing to compositional changes in the environmental matrices, involve multiple elements rather than individual variables, we developed a modified EF (mEF) based on the use of elemental associations. Different multivariate statistical methods (i.e. Robust Principal Component Analysis and Fuzzy Clustering), in a compositional data analysis (CoDA) perspective, were used to set all the terms of the mEF. The mEF was applied to 101 sediment samples collected from a 2 m-long core, covering a sedimentation period of about 150 years (1850–2007), located in the lower Changjiang River (China). The method resulted effective in recognizing most of the signals proceeding from the main natural and anthropogenic events which affected the lower river basin in the considered timespan. The largest geochemical variations recorded fit well the flooding events occurred; besides, the effects produced on the system by the recent socio-economic development (following the end of the civil war in 1949 and the beginning of economic reforms in 1978) and the start-up of the Three Gorges Dam (the world's largest power station since 2012) were also intercepted. The proposed method represents a step forward to enhance the effectiveness of the EF in discriminating geochemical anomalies that may be significant to assess the human historical impact on the environment.
显示更多 [+] 显示较少 [-]TBBPA and its alternative TCBPA induced ROS-dependent mitochondria-mediated apoptosis in the liver of Rana nigromaculata
2022
Jia, Xiuying | Yan, Ruopeng | Lin, Huikang | Liu, Zhiquan | Shen, Lilai | Yang, Hongmei | Wu, Haoying | Shan, Xiaodong | Zhang, Hangjun
Tetrabromobisphenol A (TBBPA), which is the most widely employed brominated flame retardant, and its alternative tetrachlorobisphenol A (TCBPA) are widely distributed in aquatic environments. In the present study, the hepatotoxicity induced by TBBPA and TCBPA was investigated in Rana nigromaculata, and the potential mechanisms were investigated with a particular focus on ROS (reactive oxygen species) -dependent mitochondria-mediated apoptosis. Healthy adult frogs were exposed to 0, 0.001, 0.01, 0.1, and 1 mg/L waterborne TBBPA and TCBPA for 14 days. The results showed that liver weight was significantly increased by 51.52%–98.99% in the 0.01, 0.1, and 1 mg/L TBBPA and TCBPA groups relative to the control. Histological examination revealed that the structure of the liver, to some extent, was influenced by TBBPA and TCBPA with nuclear shrinkage and mitochondrial swelling. Meanwhile, TBBPA and TCBPA have significantly increased the alanine transaminase level in serum and the content of ROS, while inhibiting the activity of superoxide dismutase in the liver. In addition, DNA fragments were observed in the TBBPA and TCBPA groups relative to the control. Expression of Cytochrome C was significantly increased by 1.13-, 1.38-, 1.60-, and 2.46-fold in 0.001, 0.01, 0.1, and 1 mg/L TBBPA, and by 1.26-, 1.51-, 2.14-, and 2.98- fold in 0.001, 0.01, 0.1, and 1 mg/L TCBPA, respectively, which indicated that TCBPA may be more toxic than TBBPA. Similarly, the ratio of Bax/Bcl-2 was increased in a dose-dependent manner. These results indicated that apoptosis in the ROS-dependent mitochondrial pathway mediates hepatotoxicity caused by TBBPA and TCBPA. The present study will facilitate an understanding of the toxicity mechanism of flame retardants.
显示更多 [+] 显示较少 [-]Correlative distribution of DOM and heavy metals in the soils of the Zhangxi watershed in Ningbo city, East of China
2022
Wang, Zhe | Han, Ruixia | Muhammad, Azeem | Guan, Dong-Xing | Zama, Eric | Li, Gang
In peri-urban critical zones, soil ecosystems are highly affected by increasing urbanization, causing probably an intense interaction between dissolved organic matter (DOM) and heavy metals in soil. Such interaction is critical for understanding the biogeochemical cycles of both organic matter and heavy metals in these zones. However, limited research has reported the correlative distribution of DOM and heavy metals at high seasonal and spatial resolutions in peri-urban critical zones. In this study, 160 soil samples were collected from the farmland and forestland of Zhangxi watershed, in Ningbo, eastern China during spring, summer, fall and winter four seasons. UV–visible absorption and fluorescent spectroscopy were used to explore the optical characteristics of DOM. The results indicated a mixture of exogenous and autogenous sources of DOM in the Zhangxi watershed, while DOM in farmland exhibited a higher degree of aromaticity and humification than that in forestland. Fluorescent results showed that humic acid-like, fulvic acid-like and microbial-derived humic-like fractions were mostly affected by seasons. The distribution of heavy metals was affected mainly by land-use changes and seasons. Correlation analysis between heavy metals and DOM characteristics and components suggested that aromatic and humic substances were more favorable in binding with EDTA extractable Ni, Cu, Zn and Cd. The bioavailable Cd and Pb decreased due to binding with humic fractions, indicating its great effects on the bioavailability of Cd and Pb. Overall, these findings provide an insight into the correlative distributions of DOM and heavy metals in peri-urban areas, thereby highlighting their biogeochemical cycling in the soil environment.
显示更多 [+] 显示较少 [-]Dermal uptake: An important pathway of human exposure to perfluoroalkyl substances?
2022
Ragnarsdóttir, Oddný | Abdallah, Mohamed Abou-Elwafa | Harrad, Stuart
Per- and polyfluoroalkyl substances (PFAS) have been produced and used in a broad range of products since the 1950s. This class, comprising of thousands of chemicals, have been used in many different products ranging from firefighting foam to personal care products and clothes. Even at relatively low levels of exposure, PFAS have been linked to various health effects in humans such as lower birth weight, increased serum cholesterol levels, and reduced antibody response to vaccination. Human biomonitoring data demonstrates ubiquitous exposure to PFAS across all age groups. This has been attributed to PFAS-contaminated water and dietary intake, as well as inadvertent ingestion of indoor dust for adults and toddlers. In utero exposure and breast milk have been indicated as important exposure pathways for foetuses and nursing infants. More recently, PFAS have been identified in a wide range of products, many of which come in contact with skin (e.g., cosmetics and fabrics). Despite this, few studies have evaluated dermal uptake as a possible route for human exposure and little is known about the dermal absorption potential of different PFAS. This article critically investigates the current state-of-knowledge on human exposure to PFAS, highlighting the lack of dermal exposure data. Additionally, the different approaches for dermal uptake assessment studies are discussed and the available literature on human dermal absorption of PFAS is critically reviewed and compared to other halogenated contaminants, e.g., brominated flame retardants and its implications for dermal exposure to PFAS. Finally, the urgent need for dermal permeation and uptake studies for a wide range of PFAS and their precursors is highlighted and recommendations for future research to advance the current understanding of human dermal exposure to PFAS are discussed.
显示更多 [+] 显示较少 [-]Photolytic degradation of novel polymeric and monomeric brominated flame retardants: Investigation of endocrine disruption, physiological and ecotoxicological effects
2022
Esther, Smollich | Malte, Büter | Gerhard, Schertzinger | Elke, Dopp | Bernd, Sures
Ecotoxicological effects of photolytic degradation mixtures of the two brominated flame retardants PolymericFR and Tetrabromobisphenol A-bis (2,3-dibrom-2-methyl-propyl) Ether (TBBPA-BDBMPE) have been studied in vitro and in vivo. Both substances were experimentally degraded separately by exposure to artificial UV-light and the resulting degradation mixtures from different time points during the UV-exposure were applied in ecotoxicological tests. The in vitro investigation showed no effects of the degraded flame retardants on the estrogenic and androgenic receptors via the CALUX (chemically activated luciferase gene expression) assay. Short-term exposures (up to 96 h) of Lumbriculus variegatus lead to temporary physiological reactions of the annelid. The exposure to degraded PolymericFR lead to an increased activity of Catalase, while the degradation mixture of TBBPA-BDBMPE caused increases of Glutathione-S-transferase and Acetylcholine esterase activities. Following a chronic exposure (28 d) of L. variegatus, no effects on the growth, reproduction, fragmentation and energy storage of the annelid were detected. The results indicate that the experimental degradation of the two flame retardants causes changes in their ecotoxicological potential. This might lead to acute physiological effects on aquatic annelids, which, however, do not affect the animals chronically according to our results.
显示更多 [+] 显示较少 [-]Effect of CaO and montmorillonite additive on heavy metals behavior and environmental risk during sludge combustion
2022
Zhang, Zhenrong | Huang, Yaji | Zhu, Zhicheng | Yu, Mengzhu | Gu, Liqun | Wang, Xinyu | Liu, Yang | Wang, Ruyi
Serious pollution is caused by heavy metals (HMs) emission during sludge combustion treatment, but the addition of minerals has the ability to alleviate the migration of HMs to the gaseous state. In this study, HMs (As, Cr, Zn and Cu) behavior, speciation, and environmental risk during sludge combustion with CaO and montmorillonite (MMT) additive was investigated in the lab-scale tube furnace. The results showed that the sludge combustion was mainly determined by volatile matter. In general, CaO inhibited the volatilization of Cr, Zn, and Cu, but promoted As volatilization. MMT inhibited the volatilization of HMs, but the effect was not obvious at high temperatures. Besides, the improvement of retention effect was not found for Cr and Cu with the increase of CaO at 1000 °C, there might exist threshold value for CaO on HMs retention process. Meanwhile, CaO increased acid-soluble fraction of As significantly at high temperatures, decreased residual fraction of Cr by oxidation, converted Zn and Cu to residual fraction. MMT increased the acid-soluble fraction of As and residual fraction of Cr. In view of the HMs environmental risk in ash, the combustion temperature of sludge was necessary to control under 1000 °C and minerals additive amount was needed to manage above 1000 °C.
显示更多 [+] 显示较少 [-]Phthalates released from microplastics inhibit microbial metabolic activity and induce different effects on intestinal luminal and mucosal microbiota
2022
Yan, Zehua | Zhang, Shenghu | Zhao, Yonggang | Yu, Wenyi | Zhao, Yanping | Zhang, Yan
The intestine is not only the main accumulation organ of microplastics (MPs), but also the intestinal environment is very conductive to the release of additives in MPs. However, the kinetics of release process, influence factors, and the related effects on gut microbiota remain largely unknown. In this study, a mucosal-simulator of the human intestinal microbial ecosystem (M-SHIME) was used to investigate the influence of gut microbiota on the release of phthalates (PAEs) from MPs and the effects of MPs on the intestinal luminal microbiota and mucosal microbiota. We found that di-(2-ethylhexyl) phthalate (DEHP), di-n-butyl phthalate (DBP), and dimethyl phthalate (DMP) were the dominant PAEs released in the gut. Gut microbiota accelerated the release of PAEs, with the time to reach the maximum release was shortened from 7 days to 2 days. Moreover, MPs induced differential effects on luminal microbiota and mucosal microbiota. Compared with mucosal microbiota, the luminal microbiota was more susceptible to the leaching of PAEs from MPs, as evidenced by more microbiota alterations. MPs also inhibited the metabolic activity of intestinal flora based on the reduced production of short chain fatty acids (SCFA). These effects were mainly contributed by the release of PAEs. Acidaminococcus and Morganella were simultaneously correlated to the release of PAEs and the inhibition of metabolic activity of intestinal microbiota and can be used as indicators for the intestinal exposure of MPs and additives.
显示更多 [+] 显示较少 [-]Dual effects of nZVI on maize growth and water use are positively mediated by arbuscular mycorrhizal fungi via rhizosphere interactions
2022
Yang, Yu-Miao | Naseer, Minha | Zhu, Ying | Zhu, Shuang-Guo | Wang, Song | Wang, Bao-Zhong | Wang, Jing | Zhu, Hao | Wang, Wei | Tao, Hong-Yan | Xiong, You-Cai
Nanoscale zero-valent iron (nZVI) might generate positive and negative effects on plant growth, since it acts as either hazardous or growth-promotion role. It is still unclear whether such dual roles can be mediated by arbuscular mycorrhizal fungi (AMF) in plant-AMF symbiosis. We first identified that in 1.5 g kg⁻¹ nZVI (≤1.5 g kg⁻¹ positively), maize biomass was increased by 15.83%; yet in 2.0 g kg⁻¹ nZVI, it turned to be declined by 6.83%, relative to non-nZVI condition (CK, p < 0.05), showing a negative effect. Interestingly, the inoculation of AMF massively improved biomass by 45.18% in 1.5 g kg⁻¹ nZVI, and relieved the growth inhibition by 2.0 g kg⁻¹ nZVI. The event of water use efficiency followed similar trend as that of biomass. We found that proper concentration of nZVI can positively interact with rhizosphere AMF carrier, enabling more plant photosynthetic carbon to be remobilized to mycorrhiza. The scanning of transmission electron microscopy showed that excessive nZVI can infiltrate into root cortical cells and disrupt cellular homeostasis mechanism, significantly increasing iron content in roots by 76.01% (p < 0.05). Simultaneously, the images of scanning electron microscopy showed that nZVI were attached on root surface to form an insoluble iron ion (Fe³⁺) layer, hindering water absorption. However, they were efficiently immobilized and in situ intercepted by extraradical hyphae in mycorrhizal-nZVI symbiosis, lowering iron translocation efficiency by 6.07% (p < 0.05). Herein, the optimized structure remarkably diminished aperture blockage at root surface and improved root activities by 30.06% (p < 0.05). Particularly, next-generation sequencing demonstrated that appropriate amount of nZVI promoted the colonization and development of Funneliformis mosseae as dominant species in rhizosphere, confirming the positive interaction between AMF and nZVI, and its regulatory mechanism. Therefore, dual effects of nZVI can be actively mediated by AMF via rhizosphere interactions. The findings provided new insights into the safe and efficient application of nanomaterials in agriculture.
显示更多 [+] 显示较少 [-]Association of ambient air pollution exposure and its variability with subjective sleep quality in China: A multilevel modeling analysis
2022
Wang, Lingli | Zhang, Jingxuan | Wei, Jing | Zong, Jingru | Lü, Chunyu | Du, Yajie | Wang, Qing
Growing epidemiological evidence has shown that exposure to ambient air pollution contributes to poor sleep quality. However, whether variability in air pollution exposure affects sleep quality remains unclear. Based on a large sample in China, this study linked individual air pollutant exposure levels and temporal variability with subjective sleep quality. Town-level data on daily air pollution concentration for 30 days prior to the survey date were collected, and the monthly mean value, standard deviations, number of heavily polluted days, and trajectory for six common pollutants were calculated to measure air pollution exposure and its variations. Sleep quality was subjectively assessed using the Pittsburgh Sleep Quality Index (PSQI), and a PSQI score above 5 indicated overall poor sleep quality. Multilevel and negative control models were used. Both air pollution exposure and variability contributed to poor sleep quality. A one-point increase in the one-month mean concentration of particulate matter with aerodynamic diameters of ≤2.5 μm (PM₂.₅) and ≤10 μm (PM₁₀) led to 0.4% (95% confidence interval (CI): 1.002–1.006) and 0.3% (95% CI: 1.001–1.004) increases in the likelihoods of overall poor sleep quality (PSQI score >5), respectively; the odds ratios of a heavy pollution day with PM₂.₅ and PM₁₀ were 2.2% (95% CI: 1.012–1.032) and 2.2% (95% CI: 1.012–1.032), respectively. Although the mean concentrations of nitrogen dioxide, sulfur dioxide, and carbon monoxide met the national standard, they contributed to the likelihood of overall poor sleep quality (PSQI score >5). A trajectory of air pollution exposure with maximum variability was associated with a higher likelihood of overall poor sleep quality (PSQI score >5). Subjective measures of sleep latency, duration, and efficiency (derived from PSQI) were affected in most cases. Thus, sleep health improvements should account for air pollution exposure and its variations in China under relatively high air pollution levels.
显示更多 [+] 显示较少 [-]