细化搜索
结果 61-70 的 7,995
Removal of Fe3+ Ions from Wastewater by Activated Borassus flabellifer Male Flower Charcoal 全文
2021
Kumar, Goutam | Tonu, Nusrat Tazeen | Dhar, Palash Kumar | Mahiuddin, Md.
Safe and clean water is essential for all living beings. Consumption of polluted water which is contaminated with iron may cause serious health implications. Therefore, removal of Fe3+ from wastewater is prerequisite for further uses. The present study intended to prepare activated charcoal (AC) from Borassus flabellifer male flower (BF) for the removal of Fe3+ ions from wastewater in a cost effective way. BFAC was produced based on carbonization method. Surface morphology and elemental composition were investigated by Scanning Electron Microscopy and Energy Dispersive X-Ray Spectroscopy. Additionally surface charge was determined by iodine number and zero point charge calculation. Batch adsorption studies were monitored using UV-visible spectroscopy. The obtain results showed a maximum adsorption at pH 8 with 0.3g adsorbent dosage at 50ppm initial Fe3+ ion concentration for 130 min contact time. The analysis of adsorption isotherm was in good agreement with both Langmuir and Freundlich adsorption isotherms. The Fe3+ removal method was found to be controlled by 1st order kinetics mechanism. However, the production cost was much cheaper and the removal performance was comparatively better than other commercial charcoals. Hence, BFAC could be used as a commercial charcoal in rural area of Bangladesh for purification of waste water.
显示更多 [+] 显示较少 [-]Human Health Risks Associated with Potentially Harmful Elements from Urban Soils of Hamedan City, Iran 全文
2021
Tashakor, Mahsa | Modabberi, Soroush
Previous studies have shown that certain urban elements and arsenic are significantly concentrated in the surface soils of Hamedan, the largest city in western Iran. This study was carried out to assess the non-cancer and cancer risks from exposure to these potentially harmful elements (As, Cd, Cr, Cu, Ni, Pb, and Zn) for Hamedan residence. In so doing, thirty-one urban and three background soil samples were analyzed by ICP-MS and the Risk Assessment Model established by the USEPA was applied to assess the health risk. It was found that the hazard index values for all the concerned elements are below 1, which indicates negligible to low non-carcinogenic risk for the exposed population. Nevertheless, some close to threshold values were recognized for As, Cr, and Pb implying that these elements have the potential to cause non-cancer risk for Hamedan citizens in case of long-term overexposure. The contribution of HQ-ingestion to total HI was the highest while the health effect associated with the inhalation exposure was trivial. Children were found to be more susceptible to potentially harmful elements than adults. The cancer risk calculation revealed that both children and adults are at increasing risk of developing cancer over a lifetime through ingestion, inhalation, and skin contact. All of the verified elements exceeded the tolerable level (1×10-6) of cancer risk however arsenic and chromium were found to be the most carcinogenic elements followed by Pb, Ni, and Cd. The carcinogenic risks were moderate for adults and high for children. This study indicates the necessity of designing effective strategies to reduce elemental pollution and to mitigate adverse human health effects of PHEs in Hamedan.
显示更多 [+] 显示较少 [-]Assessment of Variations and Correlation of Ozone and its Precursors, Benzene, Nitrogen Dioxide, Carbon monoxide and some Meteorological Variables at two Sites of Significant Spatial Variations in Delhi, Northern India 全文
2021
Sharma, Ram Chhavi | Sharma, Niharika
Ozone(O3), and its precursors, Benzene (C6H6), Nitrogen Dioxide(NO2), Carbon Monoxide (CO) and meteorological parameters Temperature, Relative Humidity and Wind Speed were measured in urban air of two sites of significant spatial variations, Delhi Milk Scheme (DMS), Sadipur and Netaji Subhash Chander Institute of Technology(NSIT) Dwarka, during 2017–2018. Samples collected by Central Pollution Control Board (CPCB) has been analysed. The concentrations of Benzene, Nitrogen dioxide and Carbon monoxide were found to be more at DMS than NSIT site in winter season (11.137±3.258, 5.540±1.441, 55.333±12.741, 44.667±10.066μg/m3, 1.433±0.058, 1.033±0.287mg/m3 respectively) and summer season (3.167±1.222, 2.233±0.929, 50.333±2.082, 31.333±6.658μg/m3, 0.743±0.151, 0.443±0.051mg/m3 respectively) while Ozone was found to be more at NSIT than DMS site (40.333±3.215, 34.433±2.503μg/m3 respectively). The maximum concentrations of Benzene for the DMS and NSIT sites, respectively, were 32.4μg/m3 and 17.7μg/m3 and was observed in the month of November while minimum were 1.0μg/m3 and 0.6μg/m3 and was observed in the month of June. For Ozone, the maximum concentrations for the DMS and NSIT sites, respectively, were 100μg/m3 and 101μg/m3 and was observed in the month of June while minimum were 33.0μg/m3 and 28.0μg/m3 and was observed in the month of February and December respectively. Regression analyses were performed to correlate O3 concentrations with C6H6, NO2 and CO in order to infer their possible sources. The study reveals that there is significant correlation of O3 with C6H6 (r2=0.475) and CO (r2=0.985) in summer at DMS and with C6H6 (r2=0.902) & NO2(r2=0.728) in winter at NSIT. The correlation of O3, C6H6, NO2 and CO with Temperature, Relative Humidity and Wind Speed has also been investigated to understand their influence on these pollutants.
显示更多 [+] 显示较少 [-]CO Emissions Modeling and Prediction using ANN and GIS 全文
2021
Etemadfard, Hossein | Sadeghi, Vahid | Hassan Ali, Faleh | Shad, Rouzbeh
Air pollution is considered a global concern due to its impacts on human life and the urban environment. Therefore, precise modeling techniques are necessary to predict air quality in congested areas such as megacities. Recently, machine learning algorithms such as Neural Networks show significant possibilities in air quality studies. This paper proposes a model to estimate air quality in a congested urban area in Baghdad city using Artificial Neural Network (ANN) algorithm and Geospatial Information System (GIS) techniques. Carbon Monoxide (CO) gas is selected as the main air pollutant. The model parameters involve; CO samples, traffic flow, weather data, and land use information collected in the field. The proposed model is implemented in Matlab environment and the results are processed after entering ArcGIS software. Using its spatial analysis tools, the outputs are presented as a map. The final findings indicate the highest value of CO emissions that reached 34 ppm during the daytime. The most polluted areas are located near congested roads and industrial locations in comparison with residential areas. The proposed model is validated by using actual values that are collected from the field, where the model's accuracy is 79%. The proposed model showed feasibility and applicability in a congested urban area due to the integration between the machine learning algorithm and GIS modeling. Therefore, the proposed model in this research can be used as a supportive model for decision making of city managers.
显示更多 [+] 显示较少 [-]Environmental Pollution and Disaggregated Economic Policy Uncertainty: Evidence from Japan 全文
2021
Odugbesan, Jamiu Adetola | Aghazadeh, Sarah
Though, the attention of researchers on exploring the impact of economic policy uncertainty on carbon emissions is on increase, however, the impact of different types of economic policy uncertainty remains unexplored. Thus, this study investigates the impact of different types of economic policy uncertainty on carbon emissions in Japan. A monthly data from 1987M1 to 2019M12 was used, while the FMOLS, DOLS, CCR and ARDL estimators were employed for examining the cointegration among the variables, as well as the long- and short-run relationship between types of economic policy uncertainty and carbon emissions. The study findings revealed a long-run cointegration among energy consumption, per capita income, fiscal, exchange rate, monetary, and trade policy uncertainties and carbon emissions. Moreover, this study found energy consumption, exchange rate, monetary, and trade policy uncertainties to contribute significantly to the increase of carbon emissions in Japan. Finally, this study suggests that environmental policy makers in Japan should take into account the economic policy uncertainty so as to promote robust information for climate policy that will be targeted at ameliorating the carbon emissions in Japan.
显示更多 [+] 显示较少 [-]Treatment Oilfield Produced Water using Coagulation/Flocculation Process (case study: Alahdab Oilfield) 全文
2021
Jabbar, Hussein Ali | Alatabe, Mohammed jaafar Ali
Produced water is a large amount of water wasted throughout the crude oil extraction process, it's a mixture of the well's deposition water and the water of oil wells extraction water. Produced water contains oil, suspended solids and dissolves solid. This study tested produced water collected from Alahdab oilfield/middle oil company for oil content and suspended solid contamination using chemical precipitation and coagulation-flocculation for reinjection and environmental considerations. Coagulation/flocculation is a common method used as primary purification to oily wastewater treatment due to its usability, performance, and low cost. Coagulant experimental was completed by A jar test device, additives of ferric sulfate and aluminium sulfate were in a range about (10 ـ 40) ppm, as well as polyelectrolyte- (polyacrylamide) as an additional flocculent in the range (1.5-3) ppm. The results show that ferric sulfate was more efficient at removing turbidity than aluminium sulfate under the same conditions, with the best removal of turbidity at dose concentration 30 ppm of Ferric sulfate and a flocculent dose concentration of 2.5 ppm of polyacrylamide, also with oil content decreasing from 396.71 ppm to 53.56 ppm.
显示更多 [+] 显示较少 [-]Optimisation of Crystal Violet and Methylene Blue Dye Removal from Aqueous Solution onto Water Hyacinth using RSM 全文
2021
Prasad, Rajnikant | Yadav, Kunwar Durg
In this study, the adsorptive removal of two dyes (crystal violet (CV) and methylene blue (MB)) with HNO3 pre-treated water hyacinth powder (WHP) adsorbent was analysed. The experiments were designed using response surface methodology (RSM) with variable input parameter pH (2-12), adsorbent dose (0.5-3 g/L), initial dyes concentration (25-200 mg/L) and time (10-180 min). The optimization condition for dye removal were (pH = 7.22, adsorbent dose = 3.0 g/L, initial dye concentration = 195.28 mg/L and time of contact = 99.29 min) for CV with removal of 98.20% and (pH = 9.82, adsorbent dose = 2.96 g/L, initial dye concentration = 199.36 mg/L and contact time = 111.74 min) for MB with removal of 97.843%. The above findings observed that pre-treated water hyacinth powder can be utilised as a cost-effective and efficient adsorbent for dye effluent wastewater treatment.
显示更多 [+] 显示较少 [-]Assessment of Water Resources Pollution Carrying Capacity in The Sa Kaeo Special Economic Zone, Thailand 全文
2021
Pratum, Chitsanuphong
The Phromhot Canal is the only natural water source for consumption and agriculture the Sa Kaeo special economic zone, Thailand. At present, the Phromhot Canal is facing a serious problem with water quality. Our study carried out to analyze and assess the pollution carrying capacity of the natural water resource. The sampling sites were examined 7 stations cut across the downstream areas. All these stations were served as the control station to represent the actual condition of the Phromhot Canal. The results indicated that the water quality of the Phromhot Canal after flowing through the Aranyaprathet Municipality's wastewater treatment plant (AM's-WWTP) was severely contaminated. Effluents from the AM's-WWTP does not meet the effluent quality standard of the Ministry of Natural Resources and Environment, Thailand. In addition, it can flow into the water body up to 6,439.55 m3/day. The maximum amount of a pollutant (in terms of BOD loading) allowed to enter a water body of the Phromhot Canal should be ≤ 0.08 kgBOD/day (dry period) and 16.52 kgBOD/day (wet period). While the Phromhot Canal has to carry BOD loading up to 51.12 kgBOD/day. For this reason, the Phromhot Canal at after flowing through the WWTP was unable to the pollution carrying capacity. From the field survey, the AM's-WWTP is not suitable for wastewater treatment, which has a capacity of 923.93 m3/day. Therefore, it is necessary to strictly control the drainage of the wastewater from the Aranyaprathet Municipality's wastewater treatment system, both quantitative and geographic.
显示更多 [+] 显示较少 [-]Exploring the use of Macrophytes as Biological Indicators for Organic Pollution of Chanchaga River in North Central Nigeria 全文
2021
Ali, Andrew | Obi-Iyeke, Grace | Keke, Unique | Arimoro, Francis
Macrophytes are creatures with low versatility and cannot stay away from any mix of streamflow, nutrient accessibility, and other physical and chemical attributes that impact their survival in the aquatic system. Sampling for macrophytes in Chanchaga River was conducted monthly for a 6-month period (May - October 2019). Sampling stations were selected at approximately equal distance along the streamline, the aquatic vegetation were surveyed, and some environmental variables were analysed using standard methods. Results obtained indicated that temperature ranged from 24.6-28.4°C; pH 6.4 -9.7; Electrical conductivity 28.0-79.0μS cm-1; Total dissolved solids 16-75 mg L-1; Dissolved oxygen(DO) 1.3-5.2 mg L-1; Nitrate 0.217-0.654 mg L-1; Phosphate 0.084-0.211 mg L-1; Biological oxygen demand (BOD) 0.89-5.4 mg L-1 and total alkalinity 8.00-11.00 mgL-1 for the study period. A total of eleven (11) macrophyte species belonging to ten genera and eight families were identified during the entire study. Variations in terms of families showed that Araliaceae was the most abundant followed by Poaceae, while Cyperaceae had more species throughout the study period. The high frequency of Araliaceae, Cyperaceae, and Poaceae families suggests that the environmental characteristics favour these species. We propose the use of Cyperus digitatus, Cyperus papyrus and Mimosa spp. as macrophytes indicators of organic pollution in Chanchaga River.
显示更多 [+] 显示较少 [-]Biosorption of Reactive Red 120 Dye from Aqueous Solutions by using Mahagoni (Swietenia mahagoni) Wood and Bark Charcoal: Equilibrium, and Kinetic Studies 全文
2021
Chakraborty, Tapos Kumar | Ghosh, Gopal | Akter, Mst. Nowshin | Adhikary, Keya | Islam, Md. Shahnul | Ghosh, Prianka | Zaman, Samina | Habib, Ahsan | Kabir, A. H. M. Enamul
This study analyzed the potential use of Mahagoni wood charcoal (MWC) and Mahagoni bark charcoal (MBC) as biosorbent for reactive red 120 (RR 120) dye removal from aqueous solutions. The effect of different operating parameters such as contact time (1–210 min), pH (3–11), adsorbent dose (1–20 g/L), and initial RR 120 concentration (5–70 mg/L) on adsorption processes was studied under batch adsorption experiments. The maximum removal of RR 120 by MWC (78%) and MBC (88%) was achieved when the optimum conditions were initial RR 120 concentration (5 mg/L), pH (3), adsorbents dose (10 g/L) and equilibrium contact time (150 min). The RR 120 adsorption data of MWC and MBC were better described by the Langmuir and Freundlich isotherm models, respectively. The MWC and MBC showed maximum adsorption capacities of 3.806 and 5.402 mg/g, respectively. Kinetic adsorption data of all adsorbents (MWC and MBC) followed the pseudo-second-order model and this adsorption process was controlled by chemisorption with multi-step diffusion. A lower desorption rate advocated that both strong and weak binding forces could exist between RR 120 molecules and adsorbents. The study results revealed that the utilization of either MWC and or MBC as an adsorbent for treating RR 120 is effective and environmentally friendly.
显示更多 [+] 显示较少 [-]