细化搜索
结果 601-610 的 736
Zinc tolerance and uptake by Arabidopsis halleri ssp. gemmifera grown in nutrient solution
2010
Kashem, Md Abul | Singh, Bal Ram | Kubota, Hiroshi | Sugawara, Reiko | Kitajima, Nobuyuki | Kondo, Toshihito | Kawai, Shigenao
Background, aim, and scope Zinc is an essential micronutrient element but its concentrations found in contaminated soils frequently exceed those required by the plant and soil organisms, and thus create danger to animal and human health. Phytoremediation is a technique, often employed in remediation of contaminated soils, which aims to remove heavy metals or other contaminants from soils or waters using plants. Arabidopsis (A.) halleri ssp. gemmifera is a plant recently found to be grown vigorously in heavy metal contaminated areas of Japan and it contained remarkably high amount of heavy metals in its shoots. However, the magnitude of Zn accumulation and tolerance in A. halleri ssp. gemmifera need to be investigated for its use as a phytoremediation plant. Materials and methods A. halleri ssp. gemmifera was grown for 3 weeks into half-strength nutrient solution with Zn (as ZnSO₄) levels ranging from 0.2 to 2,000 µM. The harvested plants were separated into shoots and roots, dried in the oven, and ground. The plant tissue was digested with nitric-perchloric acid, and the Zn concentration in the digested solution was measured by atomic absorption spectrophotometer. Results and discussion The results showed no reduction in shoot and root dry weight when plants were grown at 0.2 to 2,000 µM Zn in the solution. The highest Zn concentration measured in the shoots was 26,400 mg kg⁻¹ at 1,000 µM Zn, while in the roots, it was 71,000 mg kg⁻¹ at 2,000 µM Zn treatment. Similar to the Zn concentration in plant parts, maximum Zn accumulation of 62 mg plant⁻¹ in the shoots and 22 mg plant⁻¹ in the roots was obtained at 1,000 and 2,000 µM Zn in the solution. The percentage of Zn translocation in shoot varied from 69% to 90% of the total Zn, indicating that the shoot was the major sink of Zn accumulation in this plant. Conclusions The results of this study indicate that the growth of A. halleri ssp. gemmifera was not affected by the Zn level of up to 2,000 µM in the nutrient solution. The concentration of Zn found in shoot indicated that A. halleri ssp. gemmifera has an extraordinary ability to tolerate and accumulate Zn and hence a good candidate for the phytoremediation of Zn-polluted soil. Recommendations and outlook Based on the results presented in this study and earlier hydroponics, and field study, A. halleri ssp. gemmifera seems to be a potential heavy metals hyperaccumulator, and could be recommended to use for phytoremediation of Cd- and Zn-contaminated soils.
显示更多 [+] 显示较少 [-]Removal of estrone, 17α-ethinylestradiol, and 17ß-estradiol in algae and duckweed-based wastewater treatment systems
2010
Shi, Wenxin | Wang, Lizheng | Rousseau, Diederik P. L. | Lens, P. N. L. (Piet N. L)
Background, aim, and scope Many pollutants have received significant attention due to their potential estrogenic effect and are classified as endocrine disrupting compounds (EDCs). Because of possible ecological effects and increased attention for water reuse schemes, it is important to increase our understanding of the EDC removal capacities of various wastewater treatment systems. However, there has so far been little research on the fate and behavior of EDCs in stabilization pond systems for wastewater treatment, which represent an important class of wastewater treatment systems in developing countries because of their cost-effectiveness. The aim of this work is to study the fate and behavior of EDCs in algae and duckweed ponds. Because the synthetic hormone 17α-ethinylestradiol (EE2) and the natural hormones estrone (E1), as well as 17β-estradiol (E2), have been detected in effluents of sewage treatment plants and been suggested as the major compounds responsible for endocrine disruption in domestic sewage; E1, E2, and EE2 were therefore chosen as target chemicals in this current work. Materials and methods Both batch tests and continuous-flow tests were carried out to investigate the sorption and biodegradation of estrogens in algae and duckweed pond systems. The applied duckweed was a Lemna species. The applied algae was a mixture of pure cultures of six different algae genera, i.e., Anabaena cylindrica, Chlorococcus, Spirulina platensis, Chlorella, Scenedesmus quadricauda, and Anaebena var. Synthetic wastewater were used in all tests. The concentrations of estrogens were measured with three different enzyme-linked immunosorbent assay kits specific for E1, E2, or EE2. When the concentrations of estrogens in water samples were below the lowest quantitative analysis range (0.05 µg/l), preconcentration of the water samples were performed by means of solid phase extraction (SPE) with C18 cartridges. Results The 6-day batch tests show that the presence of algae or duckweed accelerated the removal of the three estrogens from the synthetic wastewater. More estrogens were removed in the tests with duckweed than in tests with algae or with wastewater. In the sorption tests, a swift sorption of the three estrogens was observed when the estrogens were contacted with duckweed or algae, while the estrogen concentrations in tap water kept unchanged during the 3-h sorption tests. The mass balances indicated that only about 5% of the estrogens were bound to the algae sediment or duckweed at the end of the 6-day tests. Results of the continuous-flow tests revealed that the algae and duckweed ponds effectively removed E1, E2, and EE2 even at nanograms per liter level. Interconversion of E1 and E2 occurred both in batch and continuous-flow tests. E2 could be readily transformed to E1, especially in the tests with algae. Discussion Different processes like sorption, biodegradation and photolytic degradation might play an important role in the removal of estrogens from the aquatic phase. The 3-h sorption tests support the importance of sorption for estrogen removal, in which a rapid initial sorption was observed over the first 2 min for E1/E2/EE2 to both duckweed and algae. In the 6-day batch tests, estrogens were sorbed by algae or duckweed during the early stage when algae and duckweed were contacted with the synthetic wastewater and the sorbed estrogens were further biodegraded by the microorganisms developed in the wastewater. The persistent estrogen concentrations in tap water, however, implied that no sorption, biodegradation, or photolytic degradation occurred in tap water under the specific experimental conditions. Under aerobic or anoxic conditions, E2 could be first oxidized to E1, which is further oxidized to unknown metabolites and finally to CO₂ and water. Under anaerobic conditions, E1 can also be reduced to E2. However, the interconversion might be much more complex especially in the tests with algae because both aerobic and anaerobic conditions occurred in these tests due to the variation of the dissolved oxygen concentration induced by the light regime. Conclusions This study shows that estrogens, E1, E2, and EE2, can be effectively removed from the continuous-flow algae and duckweed ponds even when their concentrations are at nanograms per liter level. The presence of algae and duckweed accelerate the removal of estrogens from the synthetic wastewater because estrogens can be quickly sorbed on duckweed or algae. The sorbed estrogens are subsequently degraded by microorganisms, algae, or duckweed in the wastewater treatment system. E1 and E2 are interconvertible in both duckweed and algae pond systems. E2 can be readily transformed to E1, especially in the tests with algae. Recommendation and perspectives Based on the tests performed so far, one can conclude that both sorption and biodegradation are important to the estrogens removal from stabilization pond systems for wastewater treatment. Further research using, e.g., radioimmunoassay is needed to investigate the biodegradation pathway of estrogens in algae and duckweed ponds.
显示更多 [+] 显示较少 [-]Reproductive functions of wild fish as bioindicators of reproductive toxicants in the aquatic environment
2010
Allner, Bernhard | von der Gönna, Sabine | Griebeler, Eva-Maria | Nikutowski, Nadja | Weltin, Annette | Stahlschmidt-Allner, Petra
Background, aim, and scope Impacts on the reproductive health of wild fish are thought to be suitable early-warning tools indicating contamination of surface waters with endocrine-disrupting compounds. Ecotoxicological assessment of these field observations depends on the availability of reliable biomarkers to enable a discrimination of natural variations of reproductive functions from anthropogenic impacts. Materials and methods Roach and perch were caught at eight sampling sites by electrofishing twice a year in summer (July-September) and late autumn/winter (November-December) over a 2-year period. The sites are characterized by different degrees of anthropogenic impact and are situated within the greater Upper Rhine catchment. Age growths, parasitization and gonadal histology of more than 3,000 fish were examined. Results The two dominant fish species in German surface waters perch (Perca fluviatilis L.) and roach (Rutilus rutilus L.) differ considerably regarding their suitability for biomonitoring. Even in pristine habitats, perch show several variants of sex differentiation in terms of (1) the time of first sexual maturation, (2) the course of seasonal gonadal recrudescence, and (3) the occurrence of heterologous germ cells (testes ova). A statistically significant elevated proportion of males were observed in fish obtained from a TBT-contaminated marina and suppression of gonadal ripening was observed in females caught in a sewage-contaminated brook. Both effects appear to be due to chemical contamination. The only “natural” alteration of sex differentiation in roach was related to parasitization with Ligula intestinalis (Eucestoda, Pseudophyllidea). Other deviations from the normal pattern of sex differentiation were (1) suppression of ovarian ripening and (2) asynchronic seasonal gonadal recrudescence. These are strong indicators of an anthropogenically induced impact on reproductive health. Feminization phenomena were not observed at either the individual or the population level. Discussion Interpretation of field monitoring results concerning reproductive health requires large numbers of samples and detailed knowledge of the natural plasticity of sex differentiation in the species under investigation. A better understanding of the mechanisms underlying the plasticity of sex differentiation in perch is indispensable to enable perch to be used as a bioindicator. Conclusions Deviation from the strict and probably endogenous control of sex differentiation in roach is a strong and unequivocal warning signal. Recommendations and perspectives The subject of fish monitoring should be addressed in the context of a broader spectrum of potential risks. Seasonal and ontogenetic integrity of gonadal development and recrudescence are potent biomarkers, provided the natural process is well documented for the species under investigation.
显示更多 [+] 显示较少 [-]The effects of elevated carbon dioxide levels on a Vibrio sp. isolated from the deep-sea
2010
Labare, Michael P. | Bays, J Timothy | Butkus, Michael A. | Snyder-Leiby, Teresa | Smith, Alicia | Goldstein, Amanda | Schwartz, Jenna D. | Wilson, Kristopher C. | Ginter, Melody R. | Bare, Elizabeth A. | Watts, Robert E. | Michealson, Elizabeth | Miller, Nicole | LaBranche, Rachel
Introduction The effect of oceanic CO₂ sequestration was examined exposing a deep-sea bacterium identified as Vibrio alginolyticus (9NA) to elevated levels of carbon dioxide and monitoring its growth at 2,750 psi (1,846 m depth). Findings The wild-type strain of 9NA could not grow in acidified marine broth below a pH of 5. The pH of marine broth did not drop below this level until at least 20.8 mM of CO₂ was injected into the medium. 9NA did not grow at this CO₂ concentration or higher concentrations (31.2 and 41.6 mM) for at least 72 h. Carbon dioxide at 10.4 mM also inhibited growth, but the bacterium was able to recover and grow. Exposure to CO₂ caused the cell to undergo a morphological change and form a dimple-like structure. The membrane was also damaged but with no protein leakage.
显示更多 [+] 显示较少 [-]Extractable organic matter of Standard Reference Material 1649a influences immunological response induced by pathogen-associated molecular patterns
2010
Ulrich, Kerstin | Wölfle, Sabine | Mayer, Anja | Heeg, Klaus | Braunbeck, T (Thomas) | Erdinger, Lothar | Bartz, Holger
Background, aim, and scope Lungs are permanently and simultaneously challenged by airborne microorganisms and airborne pollutants. Temporal increase of airborne particulate matter (APM), a potential carrier for extractable organic matter (EOM), degrades the situation of pulmonary patients. The Ah receptor (AhR) has been described as an important factor influencing the immunological challenge by viral infections. Molecular mechanisms underlying epidemiological observations are not well understood. Cytokine secretion (IL-6, IL-8, and TGF-β) from human bronchial epithelial cells (Beas2B) was determined as an indicator for immune responses upon co-stimulation with an artificial analog of viral dsRNA [polyinosinic/polycytidylic acid, (PIC)] and EOM of Standard Reference Material 1649a (SRM). Since polycyclic aromatic hydrocarbons are major components of APM usually acting via the AhR, particular focus was on AhR involvement. Materials and methods Cytokine secretion was demonstrated by enzyme-linked immunosorbent assay. To mimic the activation of organic matter during contact of particles with the human lung, Soxhlet extraction of SRM was performed. In some experiments, the AhR was blocked by α-naphthoflavone. Results Microbial stimulation (PIC) induced Beas2B cytokine release, whereas isolated exposure to EOM of APM did not. Co-stimulation with EOM and PIC increased IL-8 secretion, whereas neither IL-6 nor TGF-β was affected. Blocking of the AhR suppressed the release of IL-8. Discussion Organic compounds adsorbed on airborne particulate matter influence the cytokine secretion of lung epithelial cells induced by pathogen-associated molecular patterns. Recommendations and perspectives Further investigation of these observations is required to understand the molecular mechanisms underlying adverse health effects of APM reported in epidemiological studies.
显示更多 [+] 显示较少 [-]The appreciation of mineral element accumulation level in some herbaceous plants species by ICP-AES method
2010
Elekes, Carmen Cristina | Dumitriu, Irina | Busuioc, Gabriela | Iliescu, Nicoleta S
Introduction From the metallurgic industry zone of Dambovita County, we harvested and analyzed seven herbaceous plants species (Lolium perenne, Festuca pratensis, Stipa capillata, Agrostis alba, Cynodon dactylon, Luzula campestris, and Agrostis tenuis) to establish the heavy metal accumulation levels in these species. Materials and method The heavy metal contents (for Cr, Mn, Zn, Sr, Cu, Ba, and Sn) were determined by analyzing the dry matter with an inductively coupled plasma-atomic emission spectrometer. This method has detection limits of 0.4-0.6 mg/kg for the analyzed metals. The heavy metal concentrations in plants harvested from the industrial area are in milligram per kilogram of dry matter and ranged from 10.03 to 191.98 mg/kg of dry matter for Cr, 165.89 to 1,103.92 mg/kg of dry matter for Mn, 62.09 to 921.67 mg/kg of dry matter for Zn, 29.21 to 50.12 mg/kg of dry matter for Sr, 0.99 to 113.83 mg/kg of dry matter for Cu, 58.66 to 133.51 mg/kg of dry matter for Ba, and 8.38 to 276.44 mg/kg of dry matter for Sn. The heavy metal accumulation levels in the studied species of plants were calculated by the rapport between the concentration level of the metal in plant samples and the level of the same metal in the soil, near the radicular system for each species of plants. Results The highest accumulation levels were found in A. alba for Cr (267.69%); in L. perenne for Mn (51.45%), Sr (114.35%), and Ba (60.81%); and in C. dactylon for Zn (136.62%), Cu (97.65%), and F. pratensis for Sn (704.00%).
显示更多 [+] 显示较少 [-]Partitioning of endocrine disrupting compounds in inland waters and wastewaters discharged into the coastal area of Thessaloniki, Northern Greece
2010
Arditsoglou, Anastasia | Voutsa, Dimitra
Background, aim, and scope In the Water Framework Directive 2000/60/EC, environmental objectives for the proper quality of inland, surface, transitional, coastal, and ground waters have been set. Member states are required to identify chemical pollutants of significance in the water bodies, to establish emission control measures, and to achieve quality standards. A specific category of pollutants are the compounds that may possess endocrine-related functions known as endocrine disrupting compounds (EDCs). This means that member states have the obligation to take action in order to prevent human exposure to these compounds via aquatic environment. The objective of this research was to study the occurrence and distribution of phenolic and steroid EDCs in inland waters and wastewaters discharged in the area of Thermaikos Gulf, Thessaloniki, Northern Greece. Materials and methods Samples were collected from three rivers, four streams, and four municipal and industrial wastewaters from the area of Thessaloniki, Northern Greece, during the period 2005-2006. The samples were analyzed for 14 EDCs (nonylphenol, octylphenol, their mono- and di-ethoxylate oligomers, bisphenol A, estrone, 17α-estradiol, 17β-estradiol, estriol, mestranol, and 17α-ethynylestradiol). The compounds were recovered by solid phase extraction and ultrasonic extraction from the dissolved phase and particulate phase, respectively, and determined by employing gas chromatography-mass spectrometry. Results Results revealed the presence of phenolic EDCs (NP, NP1EO, NP2EO, tOP, OP1EO, OP2EO, and BPA) in all water and wastewater samples. Steroid EDCs were not found at detectable concentrations. The relationships between field partition coefficients of EDCs and concentration of total suspended solids, dissolved, and particulate organic carbon were investigated. Discussion Rivers exhibited concentrations of EDCs similar to minimally impacted surface waters worldwide. The concentrations of NP and OP occasionally exceeded the environmental quality criteria proposed for inland waters. The concentrations of EDCs in streams exhibited wide variations due to low flow rate in these systems and the impact of wastewaters from various pollution sources. Wastewater from tannery activities showed extremely high concentrations of NP, whereas relatively high concentrations of EDCs were determined in effluents from the industrial wastewater treatment plant. Field partition coefficients of EDCs are negatively correlated with concentrations of total suspended solids and dissolved organic carbon and positively correlated with particulate organic carbon. Conclusions The examined rivers (Aliakmon, Axios, and Loudias) exhibited concentrations of EDCs similar to minimally impacted surface waters worldwide. However, special attention should be paid to these systems since the concentrations for NP and OP occasionally were above the proposed quality standards, revealing the impact of urban, industrial, and agricultural activities. High concentrations of EDCs were determined in streams, urban, and industrial wastewater posing significant risk to the aquatic environment they discharged. Recommendations and perspectives The occurrence of EDCs in inland waters and wastewaters discharged to Thermaikos Gulf results in an increased risk to the marine environment. Thus, these systems should be regularly monitored, especially for NP, OP, and BPA that are considered as priority hazardous compounds in the Water Framework Directive.
显示更多 [+] 显示较少 [-]Bioremediation of acidic oily sludge-contaminated soil by the novel yeast strain Candida digboiensis TERI ASN6
2010
Sood, Nitu | Patle, Sonali | Lal, Banwari
Background, aim, and scope Primitive wax refining techniques had resulted in almost 50,000 tonnes of acidic oily sludge (pH 1-3) being accumulated inside the Digboi refinery premises in Assam state, northeast India. A novel yeast species Candida digboiensis TERI ASN6 was obtained that could degrade the acidic petroleum hydrocarbons at pH 3 under laboratory conditions. The aim of this study was to evaluate the degradation potential of this strain under laboratory and field conditions. Materials and methods The ability of TERI ASN6 to degrade the hydrocarbons found in the acidic oily sludge was established by gravimetry and gas chromatography-mass spectroscopy. Following this, a feasibility study was done, on site, to study various treatments for the remediation of the acidic sludge. Among the treatments, the application of C. digboiensis TERI ASN6 with nutrients showed the highest degradation of the acidic oily sludge. This treatment was then selected for the full-scale bioremediation study conducted on site, inside the refinery premises. Results The novel yeast strain TERI ASN6 could degrade 40 mg of eicosane in 50 ml of minimal salts medium in 10 days and 72% of heneicosane in 192 h at pH 3. The degradation of alkanes yielded monocarboxylic acid intermediates while the polycyclic aromatic hydrocarbon pyrene found in the acidic oily sludge yielded the oxygenated intermediate pyrenol. In the feasibility study, the application of TERI ASN6 with nutrients showed a reduction of solvent extractable total petroleum hydrocarbon (TPH) from 160 to 28.81 g kg⁻¹ soil as compared to a TPH reduction from 183.85 to 151.10 g kg⁻¹ soil in the untreated control in 135 days. The full-scale bioremediation study in a 3,280-m² area in the refinery showed a reduction of TPH from 184.06 to 7.96 g kg⁻¹ soil in 175 days. Discussion Degradation of petroleum hydrocarbons by microbes is a well-known phenomenon, but most microbes are unable to withstand the low pH conditions found in Digboi refinery. The strain C. digboiensis could efficiently degrade the acidic oily sludge on site because of its robust nature, probably acquired by prolonged exposure to the contaminants. Conclusions This study establishes the potential of novel yeast strain to bioremediate hydrocarbons at low pH under field conditions. Recommendations and perspectives Acidic oily sludge is a potential environmental hazard. The components of the oily sludge are toxic and carcinogenic, and the acidity of the sludge further increases this problem. These results establish that the novel yeast strain C. digboiensis was able to degrade hydrocarbons at low pH and can therefore be used for bioremediating soils that have been contaminated by acidic hydrocarbon wastes generated by other methods as well.
显示更多 [+] 显示较少 [-]Gas phase reactions of unsaturated esters with Cl atoms
2010
Martín Porrero, María Pilar | Gallego-Iniesta García, Maria Paz | Espinosa Ruiz, Jose Luis | Tapia Valle, Araceli | Cabañas Galán, Beatriz | Salgado Muñoz, Maria Sagrario
Background, aim, and scope Acrylate and methacrylate esters are α,β-unsaturated esters that contain vinyl groups directly attached to the carbonyl carbon (CH₂=CHCOO- and CH₂=CCH₃COO-, respectively) and are widely used in the polymer plastic and resin production. Rate coefficients for Cl reactions for most of the unsaturated esters have not been previously determined, and a good understanding is needed of all the atmospheric oxidation processes of these compounds in order to determine lifetimes in the atmosphere and to evaluate the impact of these reactions on the formation of photo-oxidants and therefore on health and environment. Materials and methods The relative rate technique has been used to obtain rate coefficients for the reactions between the Cl atom and a series of unsaturated esters. The experiments have been carried out in a static Teflon reactor at room temperature and atmospheric pressure (N₂ as bath gas) using gas chromatography with flame ionization detection as detection system. Results The following rate coefficients are obtained (in cubic meter per molecule per second): methyl acrylate + Cl = 1.71 ± 0.13 × 10⁻¹⁰; methyl methacrylate + Cl = 2.30 ± 0.18 × 10⁻¹⁰; ethyl acrylate + Cl = 1.82 ± 0.13 × 10⁻¹⁰; ethyl methacrylate + Cl = 2.71 ± 0.21 × 10⁻¹⁰; butyl acrylate + Cl = 2.94 ± 0.23 × 10⁻¹⁰; butyl methacrylate + Cl = 3.83 ± 0.30 × 10⁻¹⁰; methyl 3-methyl acrylate + Cl = 2.21 ± 0.17 × 10⁻¹⁰; and methyl 3,3-dimethyl acrylate + Cl = 3.58 ± 0.28 × 10⁻¹⁰. Discussion Rate coefficients calculated for Cl reactions are around one order of magnitude higher than OH ones. The effect in the reactivity of increased substitution at the carbon-carbon double bond is analyzed and also the effect of the identity of the alkyl group R in the -C(O)OR. Atmospheric lifetimes of the compounds against the attack by the major oxidants are estimated and the atmospheric implications are discussed. Conclusions The dominant atmospheric loss process for acrylate esters is clearly their daytime reaction with the hydroxyl radical. However, in coastal areas and in the marine boundary layer and in some industrial zones, Cl-atom-initiated degradation of the unsaturated esters considered here can be a significant if not dominant homogeneous loss process. Recommendations and perspectives Product analysis should be necessary in order to evaluate the real environmental impact of these reactions. OH and ozone reactions of most of the considered compounds have already been studied and products determined, but kinetic and products information for NO₃ radical reactions is especially scarce.
显示更多 [+] 显示较少 [-]Gas emission into the atmosphere from controlled landfills: an example from Legoli landfill (Tuscany, Italy)
2010
Raco, Brunella | Battaglini, Raffaele | Lelli, Matteo
Background, aim and scope Landfill gas (LFG) tends to escape from the landfill surface even when LFG collecting systems are installed. Since LFG leaks are generally a noticeable percentage of the total production of LFG, the optimisation of the collection system is a fundamental step for both energy recovery and environmental impact mitigation. In this work, we suggest to take into account the results of direct measurements of gas fluxes at the air-cover interface to achieve this goal. Materials and methods During the last 5 years (2004-2009), 11 soil gas emission surveys have been carried out at the Municipal Solid Waste landfill of Legoli (Peccioli municipality, Pisa Province, Italy) by means of the accumulation chamber method. Direct and simultaneous measurements of CH₄ and CO₂ fluxes from the landfill cover (about 140,000 m²) have been performed to estimate the total output of both gases discharged into the atmosphere. Three different data processing have been applied and compared: Arithmetic mean of raw data (AMRD), sequential Gaussian conditional simulations (SGCS) and turning bands conditional simulations (TBCS). The total amount of LFG (captured and not captured) obtained from processing of direct measurements has been compared with the corresponding outcomes of three different numerical models (LandGEM, IPCC waste model and GasSim). Results Measured fluxes vary from undetectable values (<0.05 mol m⁻² day⁻¹ for CH₄ and <0.02 mol m⁻² day⁻¹ for CO₂) to 246 mol m⁻² day⁻¹ for CH₄ and 275 mol m⁻² day⁻¹ for CO₂. The specific CH₄ and CO₂ fluxes (flux per surface unit) vary from 1.8 to 7.9 mol m⁻² day⁻¹ and from 2.4 to 7.8 mol m⁻² day⁻¹, respectively. Discussion The three different estimation methodologies (AMRD, SGCS and TBCS) used to evaluate the total output of diffused CO₂ and CH₄ fluxes from soil provide similar estimations, whereas there are some mismatches between these results and those of numerical LFG production models. Isoflux maps show a non-uniform spatial distribution, with high-flux zones not always corresponding with high-temperature areas shown by thermographic images. Conclusions The average value estimated over the 5-year period for the Legoli landfill is 245 mol min⁻¹ for CH₄ and 379 mol min⁻¹ for CO₂, whereas the volume percentage of CH₄ in the total gas discharged into the atmosphere varies from 29% to 51%, with a mean value of 39%. The estimated yearly emissions from the landfill cover is about 1.29 × 10⁸ mol annum⁻¹ (2,100 t year⁻¹) of CH₄ and 1.99 × 10⁸ mol annum⁻¹ (8,800 t year⁻¹) of CO₂. Considering that the CH₄ global warming potential is 63 times greater than that of CO₂ (20 a time horizon, Lashof and Ahuja 1990), the emission of methane corresponds to 130,000 t annum⁻¹ of CO₂. Recommendations and perspectives The importance of these studies is to provide data for the worldwide inventory of CH₄ and CO₂ emissions from landfills, with the ultimate aim of determining the contribution of waste disposal to global warming. This kind of studies could be extended to other gas species, like the volatile organic compounds.
显示更多 [+] 显示较少 [-]