细化搜索
结果 611-620 的 736
A new approach for chemical oxygen demand (COD) measurement at high salinity and low organic matter samples
2010
Kayaalp, Necati | Ersahin, Mustafa Evren | Ozgun, Hale | Koyuncu, Ismail | Kinaci, Cumali
Background, aim, and scope Chemical oxygen demand (COD) is used as a discharge standard parameter in wastewater treatment plant design, environmental modelling and many other applications. Chloride interference is an important problem of COD measurement for wastewaters containing low organic matter and high chloride concentrations. In case of chloride concentrations up to 2,000 mg/L, mercury sulphate addition at a ratio of 10:1 (HgSO₄:Cl⁻) can adequately mask the interference. When chloride concentration exceeds 2,000 mg/L, this ratio becomes ineffective to hinder the interference. At this point, it is proposed to use a greater and constant ratio of mercury sulphate addition. However, this application sometimes results in extra mercury sulphate addition which is not necessary. Even in some cases, greater addition of mercury sulphate alone is not a solution to erroneous measurement results. The purpose of the study is to determine optimum HgSO₄:Cl⁻ ratios according to the chloride concentrations of the samples and to show the importance of the strength of the digestion solution for the correct determination of the COD parameter. Materials and methods CODs of the synthetic samples containing varying COD and chloride concentrations were measured by closed reflux colorimetric method using three digestion solutions having different strengths. Results It is indicated in this study that a constant ratio of mercury sulphate can only prevent chloride interference up to a specific chloride concentration. Conclusions Achieving high precision results in case of low organic matter and high chloride concentration can only be possible by both decreasing the concentration of oxidant and adding mercury sulphate.
显示更多 [+] 显示较少 [-]Source identification of sulphate forming salts on sandstones from monuments in Salamanca, Spain—a stable isotope approach
2010
Schleicher, Nina | Recio Hernández, Clemente
Background, aim and scope Salt efflorescences markedly contribute to the alteration and deterioration of building material, in this case the Villamayor Sandstone of the facades in the Old Town of Salamanca, Spain (United Nations Educational, Scientific and Cultural Organization world cultural heritage site). A better understanding of the mechanisms of salt formation and the involved elements would allow more precise measures in monument conservation. The magnesium which is required for the salt precipitation originates from selective processes of hydrolysis. The source of sulphate, however, is presently not as clear. Identifying the source of the sulphur was the main goal of this research. Isotope ratio measurement of δ³⁴S and δ¹⁸O was used to clarify the origins of Mg sulphate salts. Materials and methods A total of 56 Mg sulphate samples were collected in two different seasons (July and November 2005) from monuments of the Old Town of Salamanca. These sampled salt efflorescences were analysed for δ³⁴S and δ¹⁸O by mass spectrometry. A ‘dual-inlet' type by VG Isotech was used for δ³⁴S and continuous flow type Isoprime by GV Instruments for δ¹⁸O. Samples were measured in triplicates and standard material was analysed for quality control. Results δ³⁴S values range between 3.6‰ and 15.4‰ with a median value of 10.2‰ for the July samples and of 10.1‰ for November samples. The results of the sulphur ratios hint towards a bimodal distribution (with modes at δ³⁴S = 6‰ and 12‰) for winter samples, which is less obvious during summer. δ¹⁸O values range from 7.1‰ to 41.1‰. However, most values range from 7.1‰ to 20.8‰, whereas only few summer samples show outliers towards higher δ¹⁸O values. The median δ¹⁸O value for July samples is 15.5‰ and for November samples 14.6‰. Discussion The isotopic ratios of the analysed sulphate samples were compared with values of possible source materials. Sulphur sources in the case of Salamanca are barites from the Villamayor Sandstone itself, sea spray, sulphides from regional rocks, biogenic sulphur (soil, avian excreta), as well as sulphur from anthropogenic sources such as building materials (especially mortar) or traffic exhaust. Salamanca is a representative site for non-industrial cities with no heavy industry and thus, there are no significant SO₂ emissions from industry. Conclusions Based on the measured isotopic ratios, it was ascertained that more than one sole sulphur source is present. However, based on additional information about the source material and possible transport ways, some sources could be excluded whereas others only played a minor role. Finally, there is strong indication that the main sulphur source is atmospheric pollution and the exhaust emissions from vehicles in particular, while mortar as building material also contributes to a minor extent. The δ¹⁸O values support this hypothesis. Moreover, the reported δ¹⁸O values are a strong indicator of the secondary nature of the Mg sulphates. Isotope ratio measurement and especially the combined use of δ³⁴S and δ¹⁸O values have proven to be a good instrument in clarifying the origin of salt efflorescences on buildings. Recommendations and perspectives Further studies should investigate more closely the isotopic composition of atmospheric aerosols in Salamanca in order to get a more detailed knowledge about the main sulphur sources, as well as to quantify the relation between the isotopic values and the amount and mineralogical form of the salts.
显示更多 [+] 显示较少 [-]Polybrominated diphenyl ethers and their methoxylated metabolites in anchovy (Coilia sp.) from the Yangtze River Delta, China
2010
Su, Guan-yong | Gao, Zi-shen | Yu, Yijun | Ge, Jia-chun | Wei, Si | Feng, Jian-fang | Liu, Feng-yan | Giesy, John P. | Lam, Michael H. W. | Yu, Hong-xia
Background, aim, and scope Polybrominated diphenyl ethers (PBDEs) and their metabolites are toxic to animals, and concentrations of the PBDEs metabolites can exceed those of the parent materials. But no information was available on concentrations of PBDEs metabolites in the lower Yangtze River in the region around Jiangsu Province of China, which is heavily urbanized and industrialized area. The aims of this study were to determine whether PBDEs and their methoxylated PBDEs (MeO-PBDEs) were accumulated in Coilia sp. in this area and to investigate the potential sources for these two kinds of brominated organic pollutants. Materials and methods Samples of four species of anchovy were collected from eight sites in the lower Yangtze River, Taihu Lake, and Hongzehu Lake. Concentrations of 13 PBDEs congeners and eight methoxylated PBDEs were determined by use of organic solvent extraction, followed by gas chromatography and mass spectrometry. Results and discussion The frequencies of detection for PBDEs and MeO-PBDEs were 92% and 53%, respectively. Concentrations of ∑PBDEs ranged from not detected (ND) to 77 ng/g lipids (ND-3.8 ng/g wet weight). Concentrations of ∑MeO-PBDEs in anchovy ranged from ND to 48 ng/g lipids (ND-8.2 ng/g wet weight). The PBDE concentrations in anchovy from the Yangtze River Delta were similar to or less than those reported for other species from other locations around the world, while the concentrations of MeO-PBDEs were comparable to or slightly less than those reported in other studies. This is the first report of MeO-PBDEs in biota of China. Conclusions The results of this study as well as those of other studies suggest that PBDEs in anchovy are primarily of synthetic origin and released by human activities, while MeO-PBDEs in anchovy are primarily from nature as natural products from the sea instead of metabolism of PBDEs in anchovy.
显示更多 [+] 显示较少 [-]Characteristics of exhaust gas, liquid products, and residues of printed circuit boards using the pyrolysis process
2010
Chiang, Hung-Lung | Lo, Cho-Ching | Ma, Sen-Yi
Introduction The pyrolytic method was employed to recycle metals and brominated compounds blended into printed circuit boards (PCBs). Methods PCBs were crushed into pieces 4.0-4.8 mm in size, and the crushed pieces were pyrolyzed at temperatures ranging from 200 to 500°C. The compositions of pyrolytic residues, liquid products, and exhaust were analyzed by inductively coupled plasma atomic emission spectrometer, inductively coupled plasma mass spectrometry, and gas chromatography-mass spectrometry. Pyrolytic exhaust was collected by an impinger system in an ice bath cooler to analyze the composition fraction of the liquid product, and uncondensable exhaust was collected for gas constituent analysis. Results Phenol, methyl-phenol, and bromo-phenol were attributed mainly to the liquid product. Metal content was low in the liquid product. In addition, CO, CO₂, CH₄, and H₂ were the major components of pyrolytic exhaust. Conclusions Brominated and chlorinated compounds—i.e., dichloromethane, trans-1,2 dichloroethylene, cis-1,2 dichloroethylene, 1,1,1-trichloroethane, tetrachloromethane, bromophenol, and bromoform—could be high, up to the several parts per million (ppm) level. Low molecular weight volatile organic compounds (VOCs)—i.e., methanol, acetone, ethyl acetate, acrylonitrile, 1-butene, propene, propane, and n-butane—contributed a large fraction of VOCs. The concentrations of toluene, benzene, xylene, ethylbenzene, and styrene were in the ppm range.
显示更多 [+] 显示较少 [-]Influence of temperature and origin of dissolved organic matter on the partitioning behavior of polycyclic aromatic hydrocarbons
2010
Haftka, Joris J. H | Govers, Harrie A. J | Parsons, John R
Background, aim, and scope The behavior of polycyclic aromatic hydrocarbons (PAHs) is affected by dissolved organic matter (DOM) present in pore water of soils and sediments. Since partitioning to DOM reduces the bioavailable or freely dissolved PAH concentration in pore water, it is important to assess the effect of environmental variables on the magnitude of dissolved organic matter to water partition coefficients (K DOC). The objective of this study was to apply passive samplers to measure freely dissolved PAHs allowing depletion from the aqueous phase. The method was applied to determine K DOC at different temperatures for a selection of PAHs with natural DOM of very different origin. Materials and methods Freely dissolved concentrations of (spiked) phenanthrene, anthracene, fluoranthene, pyrene, and benzo[e]pyrene were determined by exposing polydimethylsiloxane (PDMS) fibers to aqueous solutions containing DOM extracted from freshwater sediments from Finland and the Netherlands. The K DOC values were subsequently calculated at different temperatures (3.2, 20, and 36°C) by including temperature-dependent PDMS to water partition coefficients (K PDMS) in a mass balance. Furthermore, the effect of temperature on partitioning of PAHs to PDMS fibers or DOM was assessed by comparing the enthalpy of sorption to the excess enthalpy of dissolution of liquid PAHs. Results and discussion Partitioning to DOM resulted in a decrease of freely dissolved concentrations with increasing DOM concentrations and a large range in log K DOC values at 20°C for benzo[e]pyrene was observed (log K DOC = 4.93-6.60 L kg⁻¹ organic carbon). An increase of 10°C in temperature resulted in a decrease of K PDMS by 0.09 to 0.13 log units for phenanthrene to pyrene and a decrease of K DOC by 0.13 log units for pyrene. The calculated enthalpies of sorption were less exothermic than the (negative) excess enthalpies of dissolution as expected for non-specific interactions between PAHs and PDMS or DOM. Conclusions The bioavailability of PAHs in sedimentary pore waters can be accurately determined by application of PDMS fibers (without requiring negligible depletion) in the presence of natural DOM with different sorption affinity for PAHs. The observed natural variability in log K DOC values for different sediments shows that large differences can occur in freely dissolved PAH concentrations in pore water and properties of DOM should be taken into account in predicting the bioavailability of PAHs. Furthermore, the effect of temperature on the partitioning behavior of PAHs shows that interactions between PAHs and environmental sorbents are comparable to interactions between PAHs in their pure condensed liquid phase and calculated excess enthalpies can be safely used to directly correct partition coefficients for temperature. Recommendations and perspectives The application of PDMS fibers in measuring freely dissolved PAH concentrations can be used to study structural and thermodynamic aspects of PAH sorption to natural DOM as well as other environmental processes such as enhanced diffusion phenomena in pore water that are dependent on the amount (or concentration) of DOM, sorption affinity of DOM, and hydrophobicity of PAHs. These environmental factors will therefore give further insight into the site-specific exposure to freely dissolved PAH concentrations in soil and sedimentary pore water.
显示更多 [+] 显示较少 [-]Evaluation of surface water quality using an ecotoxicological approach: a case study of the Alqueva Reservoir (Portugal)
2010
Palma, Patricia | Alvarenga, Paula | Palma, Vera | Matos, Cláudia | Fernandes, Rosa Maria | Soares, Amadeu | Barbosa, Isabel Rita
Background, aim, and scope Freshwater reservoirs can be impacted by several hazardous substances through inputs from agricultural activity, sewage discharges, and groundwater leaching and runoff. The water quality assessment is very important for implementation of the monitoring and remediation programs to minimize the risk promoted by hazardous substances in aquatic ecosystems. Evaluation of the degree of contamination of aquatic environments must not take in account only its chemical characterization but it must be complemented with biological assays, which determine potential toxic effects and allows an integrated evaluation of its effects in populations and aquatic ecosystem communities. The application of this type of strategy has clear advantages allowing a general evaluation of the effects from all the water components, including those due to unknown substances and synergic, antagonistic, or additive effects. There are only a few studies that reported ecotoxicological acute end points, for the assessment of surface water quality, and the relationship among toxicity results and the anthropogenic pollution sources and the seasonal period. The aim of this study was to assess the ecotoxicological characterization of the surface water from Alqueva reservoir (South of Portugal) and to evaluate the influence of anthropogenic sources of pollution and their seasonal variation in its toxicity. The construction of Alqueva reservoir was recently finished (2002) and, to our knowledge, an ecotoxicological assessment of its surface water has not been performed. Because of that, no information is available on the possible impact of pollutants on the biota. The surface water toxicity was assessed using acute and chronic bioassays. The results are to be used for developing a monitoring program, including biological methods. Materials and methods Water samples were collected during 2006-2007, at each of the nine sampling sites selected in Alqueva reservoir. These sampling points allow an assessment at the upstream (Sra. Ajuda, Alcarrache, Álamos-Captação), at the middle (Alqueva-Montante, Alqueva-Mourão, Lucefecit), and at the downstream of the water line (Alqueva-Jusante; Ardila-confluência; Moinho das Barcas). The campaigns occurred in February, March, May, July, September, and November of 2006 and February, March, and May of 2007. The rainy season comprised November, February, and March, and the dry season included May, July, and September. A total of 81 samples were collected during the study period. The physical-chemical parameters were analyzed following standard and recommended methods of analysis (APHA et al. 1998). The pesticide analyses were performed using gas chromatography according to DIN EN ISO 6468 (1996). Surface water ecotoxicity was evaluated using the following bioassays: Vibrio fischeri luminescence inhibition, Thamnocephalus platyurus mortality, and Daphnia magna immobilization and reproduction assay. The Spearman rank correlation coefficients were used to evaluate the associations between the water sample physicochemical properties (from each sampling station in each season) and the acute and chronic toxicological effects, with a level of significance p < 0.05. Results In the acute toxicity study, the species that was found to be the most sensitive was T. platyurus. T. platyurus detected a higher number of toxic water samples during the dry season. Concerning the luminescent inhibition of V. fischeri, the results showed that this organism detected a great number of toxic water samples in rainy seasons. The water samples, which promoted higher toxic effects towards this species, were from the north and from the middle of the reservoir. The correlation analysis showed that V. fischeri luminescent inhibition (%) was positively correlated with total phosphorus, chlorpyrifos, iron, and arsenic. T. platyurus mortality (%) was positively correlated with the water pH, 5-day biochemical oxygen demand (BOD₅), chlorides, atrazine, simazine, terbuthylazine, and endosulfan sulfate contents. Although the surface waters did not promote acute toxicity to the crustacean D. magna, in the chronic exposure, a significant decrease in the number of juveniles per female was observed, mainly at the dry period. The number of juveniles per female, in the reproduction test of D. magna, was negatively correlated with pH, temperature, BOD₅, chloride, atrazine, simazine, terbuthylazine, and endosulfan sulfate. The water toxicity of the Alqueva water might be due principally to the intensive agriculture activities surrounding the reservoir and to the municipal wastewater discharges. Discussion The physicochemical parameters and the pesticide concentrations indicated that the water quality was worse in the north part of the reservoir system. These results are characteristic of the majority of reservoirs, once the construction of the dam promoted, by itself, the impounding of water flow and the increase of compound residence time. The toxicity tests corroborate with the chemical characterization. Acute toxicity of Alqueva water may be a result of the effect promoted by chlorpyrifos, endosulfan sulfate, phosphorus, and iron. Chronic toxicity may be a result of the effect of herbicides, arsenic, organic matter, endosulfan sulfate in mixture. Hence, the water toxicity of the Alqueva might be due principally to the intensive agriculture activities surrounding the reservoir and to the municipal wastewater discharges. Conclusions This study has shown that a large number of samples from different sites of the Alqueva reservoir contained potentially toxic contaminants. The sites with impaired water quality were those located at the north of the reservoir and in the surrounding areas of intensive agricultural activity. The results demonstrated that the use of a screening of acute and chronic toxicity tests with organisms from different trophic levels and with distinct sensibilities allowed the detections of several patterns of toxicity from spatial and temporal variability promoted by natural or anthropogenic sources. The chronic responses showed, especially in the dry season, that some of the species belonging to this aquatic ecosystem might be at risk. Recommendations and perspectives The V. fischeri and T. platyurus are two species that should be used in the acute bioassays for the ecotoxicological monitoring programs of this reservoir. It is recommended that other species, such as a productive organism (algae), be included in the next study, once the water reservoir had high levels of herbicides. Ecotoxicological assessment of surface water must integrate initial screening based on acute tests followed always by chronic bioassays. The results implicitly suggest that the implementation of processes of remediation by reducing pollutant input into the reservoir and by the implementation of water treatment processes is important and necessary.
显示更多 [+] 显示较少 [-]Isotope ratios of lead in Japanese women's hair of the twentieth century
2010
Matsumoto, Megumi | Yoshinaga, Jun
Introduction Isotope ratios of lead (²⁰⁷Pb/²⁰⁶Pb and ²⁰⁸Pb/²⁰⁶Pb) in Japanese women's hair of the twentieth century were measured to evaluate lead contamination of human proximate environment of those days. Materials and Methods The historic hair samples (n = 40) were collected in 1980s by staffs of Department of Human Ecology, University of Tokyo, from Japanese women who cut their hair in 1910s to 1968 by themselves for hair piece or needle pad and who had stored it by the time of collection. Additional five contemporary hair samples (one from male and four from females) were also included. The hair samples were digested with HNO₃, diluted with water to Pb concentration of 10 µg/kg, and isotope ratios were measured by inductively coupled plasma mass spectrometry. Results and Discussion Isotope ratios as well as Pb concentration in the hair samples of the twentieth century varied to a considerable extent depending on the period of hair cut. The oldest hair samples (1910-1920s) had the highest concentration and the most distinct isotope ratios from those of Japanese domestic Pb indicating serious contamination of proximate environment of people of those days with Pb originated from mines in other regions of the world, probably through the usage of Pb-containing face powder. The concentration and isotope ratios of Pb decreased thereafter indicating less serious contamination of proximate environment of Japanese which, in turn, should have affected by environmental contamination of mid-twentieth century due to industrial activities and leaded gasoline. Contemporary Pb level was quite low (<1 mg/kg); however, isotope ratios were close to those in 1960s when hair concentration was assumed to be strongly affected by leaded gasoline.
显示更多 [+] 显示较少 [-]Leachability and leaching patterns from aluminium-based water treatment residual used as media in laboratory-scale engineered wetlands
2010
Babatunde, A. O | Zhao, Y. Q
Concept and purpose Virtually all water treatment facilities worldwide generate an enormous amount of water treatment residual (WTR) solids for which environmentally friendly end-use options are continually being sought as opposed to their landfilling. Aluminium-based WTR (Al-WTR) can offer huge benefits particularly for phosphorus (P) removal and biofilm attachment when used as media in engineered wetlands. However, potential environmental risks that may arise from the leaching out of its constituents must be properly evaluated before such reuse can be assured. This paper presents results of an assessment carried out to monitor and examine the leachability and leaching patterns of the constituents of an Al-WTR used as media in laboratory-scale engineered wetland systems. Main features, materials and methods Al-WTR was used as media in four different configurations of laboratory-scale engineered wetland systems treating agricultural wastewater. Selected metal levels were determined in the Al-WTR prior to being used while levels of total and dissolved concentration for the metals were monitored in the influent and effluent samples. The increase or decrease of these metals in the used Al-WTR and their potential for leaching were determined. Leached metal levels in the effluents were compared with relevant environmental quality standards to ascertain if they pose considerable risks. Results Aluminium, arsenic, iron, lead and manganese were leached into the treated effluent, but aluminium exhibited the least leaching potential relative to its initial content in the fresh Al-WTR. Levels of P increased from 0.13 mg-P/g (fresh Al-WTR) to 33.9-40.6 mg-P/g (used Al-WTR). Dissolved levels of lead and arsenic (except on one instance) were below the prescribed limits for discharge. However, total and dissolved levels of aluminium were in most cases above the prescribed limits for discharge, especially at the beginning of the experiments. Conclusions, recommendations and perspectives Overall, the study indicates that leaching is observed when Al-WTR is beneficially reused for enhanced P removal in engineered wetlands. In particular, levels of aluminium in the treated effluent beyond the prescribed limits of 0.2 mg/l were observed. However, since the results obtained indicate that aluminium leached is mostly associated with solids, a post-treatment unit which can further reduce the level of aluminium in the treated effluent by filtering out the solids could serve to mitigate this. In addition, plants used in such wetland systems can uptake metals and this can also be a potential solution to ameliorating such metal releases. Periodic monitoring is thus advised. Notwithstanding, the use of Al-WTR as a media in engineered wetlands can serve to greatly enhance the removal of P from wastewaters and also serve as support material for biofilm attachment.
显示更多 [+] 显示较少 [-]Humic acids as reducing agents: the involvement of quinoid moieties in arsenate reduction
2010
Palmer, Noel E. | von Wandruszka, Ray
Purpose Dissolved humic acids abiotically reduced inorganic arsenic to varying degrees, depending on solution pH, ionic strength, and type of humate used. The functionalities of dissolved organic matter responsible for these redox reactions remained in question, but quinoid moieties undoubtedly played an important role. It is not fully understood whether the quinoids are solely responsible for arsenate reduction, and what the kinetics of the relevant processes are. Methods Electron spin resonance (ESR) spectroscopy was used to monitor the radical content of the humates, both as bulk material and as size fractions. Information on the redox status of the humates was obtained from fluorescence excitation-emission matrices and correlated with the observed spin count. Size data were obtained from fractionation and UV-Vis spectrometry. Arsenic speciation was carried out by ion chromatography. Results ESR spectroscopy showed a free radical content of 3.4 × 1,017-20 × 1,017 spins/g for bulk and fractionated aqueous humic acids. The number of electrons corresponding to these counts could not account for the entire charge transferred to arsenate during abiotic reduction. The rate constants of the reactions were found to be independent of the humic concentration. Leonardite humic acid separated on a XAD-8 resin yielded fractions that on the short time frame (0-5 h) had rate constants of 0.035 h⁻¹ for the hydrophobic fraction compared to 0.0052 h⁻¹ for the hydrophilic fraction. The rate constants for the hydrophobic and hydrophilic fractions over the longer time frame (100-200 h) were similar—7.3 × 10⁻⁴ and 7.2 × 10⁻⁴ h⁻¹, respectively. Fluorescence excitation-emission matrices of humates involved in arsenate reduction exhibited shifts typical of quinoid components undergoing redox transformations. These gradual shifts took place during the first 24 h of reduction process, after which the spectra no longer changed. The reduction of arsenate, however, continued after this period, indicating that species other than quinoids were involved. This was consistent with the fact that the rate constants for the later processes were smaller. Conclusions The existence of different redox pools within the humate was confirmed, with the quinoid-centered redox entities showing the fastest kinetics. The results pertained to all size and polarity fractions.
显示更多 [+] 显示较少 [-]Behaviour and dynamics of di-ammonium phosphate in bauxite processing residue sand in Western Australia—II. Phosphorus fractions and availability
2010
Chen, C. R. | Phillips, I. R. | Wei, L. L. | Xu, Z. H.
Background, aim and scope The production of alumina involves its extraction from bauxite ore using sodium hydroxide under high temperature and pressure. This process yields a large amount of residue wastes, which are difficult to revegetate due to their inherent hostile properties—high alkalinity and sodicity, poor water retention and low nutrient availability. Although phosphorus (P) is a key element limiting successful ecosystem restoration, little information is available on the availability and dynamics of P in rehabilitated bauxite-processing residue sand (BRS). The major aim of this experiment was to quantify P availability and behaviour as affected by pH, source of BRS and di-ammonium phosphate (DAP) application rate. Materials and methods This incubation experiment was undertaken using three sources of BRS, three DAP application rates (low, without addition of DAP; medium, 15.07 mg P and 13.63 mg N of DAP per jar, 100 g BRS; and high, 30.15 mg P and 27.26 mg N per jar, 100 g BRS), and four BRS pH treatments (4, 7, 9 and 11 (original)). The moisture content was adjusted to 55% water holding capacity and each BRS sample was incubated at 25°C for a period of 119 days. After this period, Colwell P and 0.1 M H₂SO₄ extractable P in BRS were determined. In addition, P sequential fractionation was carried out and the concentration of P in each pool was measured. Results and discussion A significant proportion (37% recovered in Colwell P and 48% in 0.1 M H₂SO₄ extraction) of P added as DAP in BRS are available for plant use. The pH did not significantly affect 0.1 M H₂SO₄ extractable P, while concentrations of Colwell P in the higher initial pH treatments (pH 7, 9 and 11) were greater than in the pH 4 treatments. The labile fractions (sum of NH₄Cl (AP), bicarbonate and first sodium hydroxide extractable P (N(I)P)) consisted of 58-64% and 70-72% of total P in the medium and high DAP rate treatments, respectively. This indicates that most P added as DAP remained labile or moderately labile in BRS, either in solution, or in adsorbed forms on the surface of more crystalline P compounds, sesquioxides and carbonate, or associated with amorphous and some crystalline Al and Fe hydrous oxides. In addition, differences in the hydrochloric acid extractable P and the residual-P fractions among the treatments with and without DAP addition were relative small comparing with other P pools (e.g., NaOH extractable P pools), further indicating the limited capacity of BRS for fixing P added in Ca-P and other most recalcitrant forms. Conclusions P availability in the original BRS without addition of DAP was very low, mostly in recalcitrant form. It has been clearly demonstrated that significant proportions of P added as DAP could remain labile or moderately labile for plant use during the rehabilitation of bauxite-processing residue disposal areas. There was limited capacity of BRS for fixing P in more recalcitrant forms (e.g., Ca-P and residual-P). Concentrations of most P pools in BRS increased with the DAP application rate. The impact of the pH treatment on P availability varied with the type of P pools and the DAP rate. Recommendation and perspectives It is recommended that the development of appropriate techniques for more accurate estimation of P availability in BRS and the quantification of the potential leaching loss of P in BRS are needed for the accurate understanding of P availability and dynamics in BRS. In addition, application of organic matters (e.g., biosolids and biochar, etc.) to BRS may be considered for improving P availability and buffering capacity.
显示更多 [+] 显示较少 [-]