细化搜索
结果 611-620 的 6,560
Light absorption properties and absorption emission factors for indoor biomass burning 全文
2020
Zhang, Lu | Luo, Zhihan | Du, Wei | Li, Gang | Shen, Guofeng | Cheng, Hefa | Tao, Shu
The optical properties of light-absorbing carbonaceous aerosols have caused increasing concerns due to their significant impacts on local and regional climates. In this study, particles from biomass burning in home stoves were collected and evaluated for their optical properties. The absorption Ångström exponent (AAE) values ranged from 1.17 to 2.92 and negatively correlated with the modified combustion efficiency, indicatinging more brown carbon in combustion emissions with relatively low combustion efficiencies. The average contribution of brown carbon to the total aerosol absorption at 370 nm was equally as important as that of black carbon (BC), with the average relative contribution fraction of 50% varying from 10% to 84% for different biomasses. The average value of the mass absorption efficiency (MAE) of BC (MAEBC) at 880 nm was positively correlated with the ratio of organic carbon to elemental carbon, indicating the significant coating effects of organic aerosols. The MAE values of BrC at 370 nm were in the range of 1.1–11.3 m²/g, with an average of 5.1 ± 2.2 m²/g. The estimated absorption emission factors at 370 nm and 880 nm were 3.75 ± 3.45 and 0.84 ± 0.78 m²/kg, respectively. Optical property information of particles emitted from real-world biomass burning are imperative in future modeling studies of biomass burning impacts on climate. The limitation of the relatively small sample size for each subgroup fuel calls for more field- and lab-based emission characterization research.
显示更多 [+] 显示较少 [-]Particulate matter concentration from open-cut coal mines: A hybrid machine learning estimation 全文
2020
Qi, Chongchong | Zhou, Wei | Lu, Xiang | Luo, Huaiting | Pham, Binh Thai | Yaseen, Zaher Mundher
Particulate matter (PM) emission is one of the leading environmental pollution issues associated with the coal mining industry. Before any control techniques can be employed, however, an accurate prediction of PM concentration is desired. Towards this end, this work aimed to provide an accurate estimation of PM concentration using a hybrid machine-learning technique. The proposed predictive model was based on the hybridazation of random forest (RF) model particle swarm optimization (PSO) for estimating PM concentration. The main objective of hybridazing the PSO was to tune the hyper-parameters of the RF model. The hybrid method was applied to PM data collected from an open-cut coal mine in northern China, the Haerwusu Coal Mine. The inputs selected were wind direction, wind speed, temperature, humidity, noise level and PM concentration at 5 min before. The outputs selected were the current concentration of PM₂.₅ (particles with an aerodynamic diameter smaller than 2.5 μm), PM₁₀ (particles with an aerodynamic diameter smaller than 10 μm) and total suspended particulate (TSP). A detailed procedure for the implementation of the RF_PSO was presented and the predictive performance was analyzed. The results show that the RF_PSO could estimate PM concentration with a high degree of accuracy. The Pearson correlation coefficients among the average estimated and measured PM data were 0.91, 0.84 and 0.86 for the PM₂.₅, PM₁₀ and TSP datasets, respectively. The relative importance analysis shows that the current PM concentration was mainly influenced by PM concentration at 5 min before, followed by humidity > temperature ≈ noise level > wind speed > wind direction. This study presents an efficient and accurate way to estimate PM concentration, which is fundamental to the assessment of the atmospheric quality risks emanating from open-cut mining and the design of dust removal techniques.
显示更多 [+] 显示较少 [-]Changes in the gut microbiome and enzymatic profile of Tenebrio molitor larvae biodegrading cellulose, polyethylene and polystyrene waste 全文
2020
Przemieniecki, Sebastian W. | Kosewska, Agnieszka | Ciesielski, Sławomir | Kosewska, Olga
Recent studies have demonstrated the ability of mealworm (Tenebrio molitor) for plastic degradation. This study is focused on changes in microbiome structure depending on diets. Microbial community obtained from oat and cellulose diet formed similar group, two kinds of polyethylene formed another group, while polystyrene diet showed the highest dissimilarity. The highest relative abundance of bacteria colonizing gut was in PE-oxodegradable feeding, nevertheless all applied diets were higher in comparison to oat. Dominant phyla consisted of Proteobacteria, Bacteroides, Firmicutes and Actinobacteria, however after PS feeding frequency in Planctomycetes and Nitrospirae increased. The unique bacteria characteristic for cellulose diet belonged to Selenomonas, while Pantoea were characteristic for both polyethylene diets, Lactococcus and Elizabethkingia were unique for each plastic diet, and potential diazotropic bacteria were characteristic for polystyrene diet (Agrobacterium, Nitrosomonas, Nitrospira).Enzymatic similarity between oatmeal and cellulose diets, was shown. All three plastics diet resulted in different activity in both, digestive tract and bacteria. The enzymes with the highest activity were included phosphatases, esterases, leucine arylamidase, β-galactosidase, β-glucuronidase, α-glucosidase, β-glucosidase, chitinase, α-mannosidase and α-fucosidase. The activity of digestive tract was stronger than cultured gut bacteria. In addition to known polyethylene degradation methods, larvae may degrade polyethylene with esterase, cellulose and oatmeal waste activity is related with the activity of sugar-degrading enzymes, degradation of polystyrene with anaerobic processes and diazotrophs.
显示更多 [+] 显示较少 [-]Evidence-based assessment on environmental mixture using a concentration-dependent transcriptomics approach 全文
2020
Wang, Pingping | Xia, Pu | Wang, Zhihao | Zhang, Xiaowei
Development of new approach methodologies is urgently needed to characterize the likelihood that complex mixtures of chemicals affect water quality. Omics advances in ecotoxicology allow assessment on a broadest coverage of disrupted biological pathway by mixtures. Here the usefulness of transcriptomic analyses for evaluation of combined effects and identification of main effect components are explored. Two artificial mixtures (Mix 1 and Mix 2) were tested by a concentration-dependent reduced zebrafish transcriptome (CRZT) approach and toxicity bioassays using zebrafish embryos. Then, the toxicities and transcriptomic effects of 12 component chemicals on embryos were incorporated into additivity models to characterize the combined effects of chemicals in mixtures and to identify the main bioactive compounds. Mix 1 and Mix 2 displayed similar embryo toxicities (LD₅₀: 6.6 μM and 8.7 μM, respectively), however, Mix 2 elicited broader biological process perturbations and 5-fold higher transcriptome potency (point of departure eliciting a 20% pathway response, PODₚₐₜₕ₂₀) than Mix 1. The predicted mixture toxicities derived from additivity expectations deviated by 2-fold or less from the measured embryo toxicities except for the Jaw defect endpoint; most biological processes deviated by 3-fold or less. Finally, diclofenac (DFC) and propiconazole (PCZ) were identified as the main contributing components (≥80% explanation) to the embryo toxicity and biological process perturbations by Mix 1. While DFC and chlorophene (CLP) explained up to 80% of the embryo toxicities and biological effects of Mix 2 associated with development and Metabolism processes. The CRZT approach provides a powerful tool for assessment of biological pathways perturbed by chemicals in mixtures and for identification of main bioactive compounds.
显示更多 [+] 显示较少 [-]QSAR models for the acute toxicity of 1,2,4-triazole fungicides to zebrafish (Danio rerio) embryos 全文
2020
Qiao, Kun | Fu, Wenjie | Jiang, Yao | Chʻen, Li-li | Li, Shuying | Ye, Qingfu | Gui, Wenjun
In recent decades, the 1,2,4-triazole fungicides are widely used for crop diseases control, and their toxicity to wild lives and pollution to ecosystem have attracted more and more attention. However, how to quickly and efficiently evaluate the toxicity of these compounds to environmental organisms is still a challenge. In silico method, such like Quantitative Structure-Activity Relationship (QSAR), provides a good alternative to evaluate the environmental toxicity of a large number of chemicals. At the present study, the acute toxicity of 23 1,2,4-triazole fungicides to zebrafish (Danio rerio) embryos was firstly tested, and the LC₅₀ (median lethal concentration) values were used as the bio-activity endpoint to conduct QSAR modelling for these triazoles. After the comparative study of several QSAR models, the 2D-QSAR model was finally constructed using the stepwise multiple linear regression algorithm combining with two physicochemical parameters (logD and μ), an electronic parameter (QN₁) and a topological parameter (XᵛPC₄). The optimal model could be mathematically described as following: pLC₅₀ = −7.24–0.30XᵛPC₄ + 0.76logD - 26.15QN₁ - 0.08μ. The internal validation by leave-one-out (LOO) cross-validation showed that the R²ₐdⱼ (adjusted noncross-validation squared correlation coefficient), Q² (cross-validation correlation coefficient) and RMSD (root-mean-square error) was 0.88, 0.84 and 0.17, respectively. The external validation indicated the model had a robust predictability with the q² (predictive squared correlation coefficient) of 0.90 when eliminated tricyclazole. The present study provided a potential tool for predicting the acute toxicity of new 1,2,4-triazole fungicides which contained an independent triazole ring group in their molecules to zebrafish embryos, and also provided a reference for the development of more environmentally-friendly 1,2,4-triazole pesticides in the future.
显示更多 [+] 显示较少 [-]Upcycling of waste polyethylene terephthalate plastic bottles into porous carbon for CF4 adsorption 全文
2020
Yuan, Xiangzhou | Cho, Moon-Kyung | Lee, Jong Gyu | Choi, Seung Wan | Lee, Ki Bong
Thermo-chemical processes for converting plastic wastes into useful materials are considered promising technologies to mitigate the environmental pollution caused by plastic wastes. In this study, polyethylene terephthalate (PET) plastic wastes were used to develop cost-effective and value-added porous carbons; the developed porous carbons were subsequently tested for capturing CF₄, a greenhouse gas with a high global-warming potential. The activation temperature was varied from 600 °C to 1000 °C and the mass ratio of KOH/carbon ranged from 1 to 3 in the preparation process and their effects on the textural properties and CF₄-capture performance of the PET plastic waste-derived porous carbons were investigated. The CF₄-adsorption uptake was dictated by the specific surface area and pore volume of narrow micropores less than 0.9 nm in diameter. PET-K(2)700, which was developed by KOH activation at 700 °C and KOH/carbon mass ratio of 2, showed the highest CF₄-adsorption uptake of 2.43 mmol g⁻¹ at 25 °C and 1 atm. Also, the CF₄-adsorption data were fitted well with the Langmuir isotherm model and pseudo second-order kinetic model. The PET plastic waste-derived porous carbons exhibited a high CF₄ uptake, good CF₄/N₂ selectivity at relatively low CF₄ pressures, easy regeneration, rapid adsorption/desorption kinetics, and excellent recyclability, which are promising for practical CF₄-capture applications.
显示更多 [+] 显示较少 [-]Fumonisins B1 exposure triggers intestinal tract injury via activating nuclear xenobiotic receptors and attracting inflammation response 全文
2020
Li, Xinran | Cao, Changyu | Zhu, Xingyi | Li, Xiaowen | Wang, Kai
Fumonisins (FBs) are mycotoxins that are widely distributed in crops and feed, and ingestion of FBs -contaminated crops is harmful to animal health. Furthermore, it is unknown if Fumonisins B1 (FB1) can cause intestinal toxicity. To investigate FB1-induced intestinal toxicity, mice were treated with 0 or 5 mg/kg FB1 by gavage administration for 42 days. Histopathology indicated that FB1 exposure caused proliferation of intestinal epithelial cells, intestinal villi and epithelial layer shedding, intestinal gland atrophy, and necrosis. Notably, FB1 interfered with nuclear xenobiotic receptors (NXR) homeostasis by regulating the level of aryl hydrocarbon receptor (AHR), constitutive androstane receptor (CAR), pregnane X receptor (PXR) and downstream target genes (CYP450s). Moreover, abnormal expression of inflammatory cytokines (IL-1β, IL-2, IL-4, IL-10, and TNF-α) indicated the occurrence of inflammation. The present study provides new insights regarding the mechanism of FB1-induced intestinal toxicity through activating the NXR system and by triggering inflammatory responses in the intestinal tract in mice.
显示更多 [+] 显示较少 [-]Identification and quantification of phenanthrene ortho-quinones in human urine and their association with lipid peroxidation 全文
2020
Luo, Kai | Carmella, Steven G. | Zhao, Yingchun | Tang, Mei Kuen | Hecht, Stephen S.
Although human exposure to polycyclic aromatic hydrocarbons (PAH) has been associated with in vivo oxidative damage, and hydroxyPAH metabolites have been used as biomarkers to assess PAH-induced oxidative stress, few studies have looked at the likely causative compounds for oxidative stress in humans - PAH quinones. We developed a method using pre-column derivatization - liquid chromatography-heated electrospray ionization-tandem mass spectrometry (LC-HESI-MS/MS) to analyze ortho-phenanthrene quinones (PheQs) in human urine. 1,2-PheQ and 3,4-PheQ were identified and quantified in 3 mL of human urine; their total concentrations were higher in cigarette smokers (0.79 ± 0.98 nmol/6h urine) than in nonsmokers (0.20 ± 0.98 nmol/6h urine) (p < 0.01). The total of 1,2-PheQ and 3,4-PheQ were more strongly correlated with urinary (Z)-7-[1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoic acid (8-iso-PGF₂α), a biomarker of lipid peroxidation (R² = 0.53, p < 0.001), than the other phenanthrene metabolites including phenanthrene tetraol (PheT), phenanthrene-1,2-dihydrodiol (1,2-PheD), and total phenanthrene phenols (OHPhe), consistent with the concept that PheQs and likely other PAH quinones play a causal role in the generation of reactive oxygen species (ROS) in humans. Thus, PheQs may be suitable as biomarkers to assess human exposure to oxygenated PAH and the subsequent oxidative damage. This study provides unique support, by analysis of human urinary metabolites, for the PAH quinone mediated oxidative damage hypothesis of PAH carcinogenesis.
显示更多 [+] 显示较少 [-]Arsenic concentrations, distributions and bioaccessibilities at a UNESCO World Heritage Site (Devon Great Consols, Cornwall and West Devon Mining Landscape) 全文
2020
Braungardt, Charlotte | Chen, Xiaqing | Chester-Sterne, Daniel | Quinn, James G.A. | Turner, Andrew
Devon Great Consols (DGC) is a region in south west England where extensive mining for Cu, Sn and As took place in the nineteenth century. Because of its historical and geological significance, DGC has protected status and is part of the Cornwall and West Devon Mining Landscape UNESCO World Heritage Site. Recently, the region was opened up to the public with the construction or redevelopment of various trails, tracks and facilities for walking, cycling and field visits. We used portable x-ray fluorescence spectrometry to measure, in situ, the concentrations of As in soils and dusts in areas that are accessible to the public. Concentrations ranged from about 140 to 75,000 μg g⁻¹ (n = 98), and in all but one case exceeded a Category 4 Screening Level for park-type soil of 179 μg g⁻¹. Samples returned to the laboratory and fractionated to <63 μm were subjected to an in vitro assessment of both oral and inhalable bioaccessibility, with concentrations ranging from <10 to 25,500 μg g⁻¹ and dependent on the precise nature and origin of the sample and the physiological fluid applied. Concentrations of As in PM₁₀ collected along various transects of the region averaged over 30 ng m⁻³ compared with a typical concentration in UK air of <1 ng m⁻³. Calculations using default EPA and CLEA estimates and that factor in for bioaccessibility suggest a 6-h visit to the region results in exposure to As well in excess of that of minimum risk. The overall risk is exacerbated for frequent visitors to the region and for workers employed at the site. Based on our observations, we recommend that the remodelling or repurposing of historical mine sites require more stringent management and mitigation measures.
显示更多 [+] 显示较少 [-]Evaluation on the biomagnification or biodilution of trace metals in global marine food webs by meta-analysis 全文
2020
Sun, Tao | Wu, Huifeng | Wang, Xiaoqing | Ji, Chenglong | Shan, Xiujuan | Li, Fei
The transmission and accumulation of trace metals in marine food webs have a profound influence on the structure and function of marine environment. In order to quantitatively assess the trophic transfer behaviors of eight common metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) in simplified five-trophic level marine food webs, a total of 9929 biological samples from 61 studies published between 2000 and 2019, involving 154 sampling sites of 33 countries/regions, were re-compiled using meta-analysis. Based on concentration-trophic level weighted linear regression and predator/prey comparison, the food web magnification factor (FWMF) and the biomagnification factor (BMF) were calculated, respectively. The results showed dissimilar trophic transfer behaviors of these metals in global marine food webs, in which As and Ni tended to be efficiently biodiluted with increasing trophic levels (FWMFs < 1, p < 0.01), while Hg, Pb and Zn trophically biomagnified (FWMFs > 1, p < 0.05). However, Cd, Cr and Cu presented no biomagnification or biodilution trend (p > 0.05). The values of FWMFs were ranked as: Hg (2.01) > Pb (1.81) > Zn (1.15) > Cu (1.13) > Cr (0.951) > Cd (0.850) > Ni (0.731) > As (0.494). In terms of specific predator-prey relationship, Pb showed significant biodilution from tertiary consumers (TC) to top predators (BMF < 1, p < 0.05), whereas Cd and Cu displayed obvious biomagnification from primary consumers (PC) to secondary consumers (SC) (BMFs >1, p < 0.05). Additionally, when Cu and Zn were transferred from SC to TC, and primary producers to PC, clear biodilution and biomagnification effects were observed, respectively (p < 0.05). Further analysis indicated that the average concentration of Hg in five-trophic level marine food webs of developed countries (0.904 mg kg⁻¹ dw) was more noticeable (p < 0.05) than that of developing countries (0.549 mg kg⁻¹ dw).
显示更多 [+] 显示较少 [-]