细化搜索
结果 611-620 的 7,995
Assessment of atmospheric pollutant emissions with maritime energy strategies using bayesian simulations and time series forecasting 全文
2021
Liu, Chia Hui | Duru, Okan | Law, Adrian Wing-Keung
With increasingly stringent regulations on emission criteria and environment pollution concerns, marine fuel oils (particularly heavy fuel oils) that are commonly used today for powering ships will no longer be allowed in the future. Various maritime energy strategies are now needed for the long-term upgrade that might span decades, and quantitative predictions are necessary to assess the outcomes of their implementation for decision support purpose. To address the technical need, a novel approach is developed in this study that can incorporate the strategic implementation of fuel choices and quantify their adequacy in meeting future environmental pollution legislations for ship emissions. The core algorithm in this approach is based on probabilistic simulations with a large sample size of ship movement in the designated port area, derived using a Bayesian ship traffic generator from existing real activity data. Its usefulness with scenario modelling is demonstrated with application examples at five major ports, namely the Ports of Shanghai, Singapore, Tokyo, Long Beach, and Hamburg, for assessment at Years 2020, 2030, and 2050 with three economic scenarios. The included fuel choices in the application examples are comprehensive, including heavy fuel oils, distillates, low sulphur fuel oils, ultra-low sulphur fuel oils, liquefied natural gas, hydrogen, biofuel, methanol, and electricity (battery). Various features are fine-tuned to reflect micro-level changes on the fuel choices, terminal location, and/or ship technology. Future atmospheric pollutant emissions with various maritime energy strategies implemented at these ports are then discussed comprehensively in details to demonstrate the usefulness of the approach.
显示更多 [+] 显示较少 [-]Antimicrobial-resistance profiles of gram-negative bacteria isolated from green turtles (Chelonia mydas) in Taiwan 全文
2021
Tsai, Ming-An | Chang, Chao-Chin | Li, Zongxian
The green turtle (Chelonia mydas) is listed as a globally endangered species and is vulnerable to anthropogenic threats, including environmental pollution. This study investigated the antimicrobial resistance of Gram-negative bacteria isolated from wild green turtles admitted to a sea turtle rehabilitation center in Taiwan. For this investigation, cloacal and nasal swab samples were collected from 28 green turtles between 2018 and 2020, from which a total of 47 Gram-negative bacterial isolates were identified. Among these, Vibrio spp. were the most dominant isolate (31.91%), and 89.36% of the 47 isolates showed resistance to at least one of 18 antimicrobial agents tested. Isolates resistant to one (6.38%), two (8.51%), and multiple (74.47%) antimicrobials were observed. The antimicrobial agents to which isolates showed the greatest resistance were penicillin (74.47%), followed by spiramycin, amoxicillin, and cephalexin. The antimicrobial-resistance profiles identified in this study provide useful information for the clinical treatment of sea turtles in rehabilitation facilities. The results of our study also imply that wild green turtles may be exposed to polluting effluents containing antimicrobials when the turtles traverse migratory corridors or forage in feeding habitats. To benefit sea turtle conservation, future research should focus on (1) how to prevent pollution from antimicrobials in major green turtle activity areas and (2) identifying sources of antimicrobial-resistant bacterial strains in coastal waters of Taiwan.
显示更多 [+] 显示较少 [-]Temporal trends and interannual variation in plastic ingestion by Flesh-footed Shearwaters (Ardenna carneipes) using different sampling strategies 全文
2021
Lavers, Jennifer L. | Hutton, Ian | Bond, Alexander L.
The world's oceans are under increasing pressure from anthropogenic activities, including significant and rapidly increasing inputs of plastic pollution. Seabirds have long been considered sentinels of ocean health, providing data on physical and chemical pollutants in their marine habitats. However, long-term data that can elucidate important patterns and changes in seabird exposure to marine pollutants are relatively limited but are urgently needed to identify and support effective policy measures to reduce plastic waste. Using up to 12 years of data, we examined the benefits and challenges of different approaches to monitoring plastic in seabirds, and the relationship between plastic and body size parameters. We found the mass and number of ingested plastics per bird varied by sample type, with lavage and road-kill birds containing less plastic (9.17–9.33 pieces/bird) than beach-washed or otherwise dead birds (27.62–32.22 pieces/bird). Beached birds therefore provide data for only a particular subset of the population, mostly individuals in poorer body condition, including those severely impacted by plastics. In addition, the mass and number of plastics in beached birds were more variable, therefore the sample sizes required to detect a change in plastic over time were significantly larger than for lavaged birds. The use of lavaged birds is rare in studies of plastic ingestion due to ethical and methodological implications, and we recommend future work on ingested plastics should focus on sampling this group to ensure data are more representative of a population's overall exposure to plastics.
显示更多 [+] 显示较少 [-]Magnetic poly(β-cyclodextrin) combined with solubilizing agents for the rapid bioaccessibility measurement of polycyclic aromatic hydrocarbons in soils 全文
2021
Qin, Shibin | Qi, Shihua | Li, Xiaoshui | Shi, Qiuyun | Li, Huan | Mou, Xiaoxuan | Zhang, Yuan
The rapid determination of the bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) in soils is challenging due to their slow desorption rates and the insufficient extraction efficiency of the available methods. Herein, magnetic poly(β-cyclodextrin) microparticles (Fe₃O₄@PCD) were combined with hydroxypropyl-β-cyclodextrin (HPCD) or methanol (MeOH) as solubilizing agents to develop a rapid and effective method for the bioaccessibility measurement of PAHs. Fe₃O₄@PCD was first validated for the rapid and quantitative adsorption of PAHs from MeOH and HPCD solutions. The solubilizing agents were then coupled with Fe₃O₄@PCD to extract PAHs from soil-water slurries, affording higher extractable fractions than the corresponding solution extraction and comparable to or higher than single Fe₃O₄@PCD or Tenax extraction. The desorption rates of labile PAHs could be markedly accelerated in this process, which were 1.3–12.0 times faster than those of single Fe₃O₄@PCD extraction. Moreover, a low HPCD concentration was sufficient to achieve a strong acceleration of the desorption rate without excessive extraction of the slow desorption fraction. Finally, a comparison with a bioaccumulation assay revealed that the combination of Fe₃O₄@PCD with HPCD could accurately predict the PAH concentration accumulated in earthworms in three field soil samples, indicating that the method is a time-saving and efficient procedure to measure the bioaccessibility of PAHs.
显示更多 [+] 显示较少 [-]Static modelling of the material flows of micro- and nanoplastic particles caused by the use of vehicle tyres 全文
2021
Prenner, Stefanie | Allesch, Astrid | Staudner, Margarethe | Rexeis, Martin | Schwingshackl, Michael | Huber-Humer, Marion | Part, Florian
The emissions of tyre wear particles (TWPs) into the environment are increasing and have negative impacts on the environment and human health. The aim of this study was therefore to establish a mass balance for vehicle tyres und TWP emissions in Austria using static material flow analysis, which enabled a quantification of mass flows of rubber including carbon black as the most mass-relevant tyre filler. Vehicle-specific and mileage-dependent emission factors were used to calculate the TWP emissions. The results for the year 2018 indicate that 80% of the tyre rubber remained in use, while 14% was re-treaded, recycled, incinerated or exported as end-of-life tyres and 6% was emitted as TWPs to air, soil or surface water. Of these 21,200 t/y released and dissipative lost TWPs, 6% were microscale, with a possible size between 0.1 and 10 μm, and 0.3% were nanoscale below 0.1 μm. The mass balance on the substance level shows that the TWPs contained 5,500 t/y of carbon black emitted in the form of airborne TWPs (6%) or entering in the soil or surface waters (47% each). Regarding air pollution from road vehicles, about 3,600 t/y were non-exhaust emissions, including tyre, brake and road-surface wear, which contributed to 9% of total dust emissions across Austria. Scenario analysis for 2050 with regard to e-mobility and the European Green Deal reveals that non-exhaust emissions can only be significantly reduced by a general reduction of the mileage or an environmentally friendly tyre design. This modelling approach provides a solid basis for decision makers in traffic planning as well as for chemical risk assessment. However, dynamic models with higher temporal and spatial resolution are needed to predict future mass flows of TWPs and their environmental fate, including their degradation products and possible accumulation effects.
显示更多 [+] 显示较少 [-]Biochar amendment mitigated N2O emissions from paddy field during the wheat growing season 全文
2021
Zhang, Qianqian | Wu, Zhen | Zhang, Xi | Duan, Pengpeng | Shen, Haojie | Gunina, Anna | Yan, Xiaoyuan | Xiong, Zhengqin
Biochar may variably impact nitrogen (N) transformation and N-cycle-related microbial activities. Yet the mechanism of biochar amendment on nitrous oxide (N₂O) emissions from agricultural ecosystems remains unclear. Based on a 6-year long-term biochar amendment experiment, we applied a dual isotope (¹⁵N–¹⁸O) labeling technique with tracing transcriptional genes to differentiate the contribution of nitrifier nitrification (NN), nitrifier denitrification (ND), nitrification-coupled denitrification (NCD) and heterotrophic denitrification (HD) pathway to N₂O production. Then the field experiment provided quantitative data on dynamic N₂O emissions, soil mineral N and key functional marker gene abundances during the wheat growing season. By using ¹⁵N–¹⁸O isotope, biochar decreased N₂O emission derived from ND (by 45–94%), HD (by 35–46%) and NCD (by 30–64%) compared to the values under N application. Biochar increased the relative contribution of NN to total N₂O production as evidenced by the increase in ammonia-oxidizing bacteria, but did not influence the cumulative NN-derived N₂O. The field experiment found that the majority of the N₂O emissions peaked following fertilization, in parallel with soil NH₄⁺ and nitrite dynamics. Soil N₂O emissions during the wheat growing stage were effectively decreased (by 38–48%) by biochar amendment. Based on the correlation analyses and random forest analysis in both microcosm and field experiments, the decrease in nitrite concentration (by 62–65%) and increase in N₂O consumption were mainly responsible for net N₂O mitigation, as evidenced by the decrease in the ratios of nitrite reductase genes/transcripts (nirS, nirK and fungal nirK) and N₂O reductase gene/transcripts (nosZI and nosZII). Based on the extrapolation from microcosm to field, biochar significantly mitigated N₂O emissions by weakening the ND processes, since NCD and HD contributed little during the N₂O emission “peaks” following urea fertilization. Therefore, emphasis should be put on the ND process and nitrite accumulation during N₂O emission peaks and extrapolated to all agroecosystems.
显示更多 [+] 显示较少 [-]Innovative mycoremediation technique for treating unsterilized PCDD/F-contaminated field soil and the exploration of chlorinated metabolites 全文
2021
Kaewlaoyoong, Acharee | Chen, Jenq-Renn | Cheng, Chih-Yu | Lin, Chitsan | Cheruiyot, Nicholas Kiprotich | Sriprom, Pongsert
Mycoremediation of unsterilized PCDD/F-contaminated field soil was successfully demonstrated by solid-state fermentation coupled with Pleurotus pulmonarius utilizing a patented incubation approach. The experiments were carried out in four setups with two as controls. The contaminated soil was homogenously mixed with solid inocula, 1:0.5 dry w/w, resulting in an initial concentration of 4432 ± 623 ng WHO-TEQ kg⁻¹. After a 30-day incubation under controlled conditions, the overall removal (approx. 60%) was non-specific. The removal was attributed to degradation by extracellular ligninolytic enzymes and uptake into the fruiting tissue (~110 ng WHO-TEQ kg⁻¹ of mushroom). Furthermore, less recalcitrant chlorinated metabolites were found, implying ether bond cleavage and dechlorination happened during the mycoremediation. These metabolites resulted from the complex interaction between P. pulmonarius and the indigenous microbes from the unsterilized soil. This study provides a new step toward scaling up this mycoremediation technique to treat unsterilized PCDD/F-contaminated field soil.
显示更多 [+] 显示较少 [-]Effects of long-term exposure of Mytilus galloprovincialis to thiacloprid: A multibiomarker approach 全文
2021
Stara, Alzbeta | Pagano, Maria | Albano, Marco | Savoca, Serena | Di Bella, Giuseppa | Albergamo, Ambrogina | Koutkova, Zuzana | Šandová, Marie | Velisek, Josef | Fabrello, Jacopo | Matozzo, Valerio | Faggio, Caterina
Thiacloprid is a neonicotinoid insecticide widely exploited in agriculture and easily mobilized towards aquatic environments by atmospheric agents. However, little information about its toxicological effects on aquatic invertebrate bioindicators is available. In this study, specimens of the mussel Mytilus galloprovincialis were exposed to thiacloprid at environmental (4.5 μg L⁻¹) and 100 times higher than environmental (450 μg L⁻¹) concentrations for 20 days. Thiacloprid affected haemolymph biochemical parameters, cell viability in the digestive gland, antioxidant biomarkers and lipid peroxidation in the digestive gland and gills at environmentally relevant concentrations (4.5 μg L⁻¹). In addition, thiacloprid exposure caused histological damage to the digestive gland and gills. Interestingly, the pesticide was detected at levels equal to 0.14 ng g⁻¹ in the soft tissues of sentinels exposed for 20 days to 450 μg L⁻¹ thiacloprid in seawaterμ. Due to its harmful potential and cumulative effects after long-term exposure of M. galloprovincialis, thiacloprid may pose a potential risk to nontarget aquatic organisms, as well as to human health. This aspect requires further in-depth investigation.
显示更多 [+] 显示较少 [-]Immunotoxic mechanisms of cigarette smoke and heat-not-burn tobacco vapor on Jurkat T cell functions 全文
2021
Scharf, Pablo | da Rocha, Gustavo H.O. | Sandri, Silvana | Heluany, Cintia S. | Pedreira Filho, Walter R. | Farsky, Sandra H.P.
Cigarette smoke (CS) affects immune functions, leading to severe outcomes in smokers. Robust evidence addresses the immunotoxic effects of combustible tobacco products. As heat-not-burn tobacco products (HNBT) vaporize lower levels of combustible products, we here compared the effects of cigarette smoke (CS) and HNBT vapor on Jurkat T cells. Cells were exposed to air, conventional cigarettes or heatsticks of HNBT for 30 min and were stimulated or not with phorbol myristate acetate (PMA). Cell viability, proliferation, reactive oxygen species (ROS) production, 8-OHdG, MAP-kinases and nuclear factor κB (NFκB) activation and metallothionein expression (MTs) were assessed by flow cytometry; nitric oxide (NO) and cytokine levels were measured by Griess reaction and ELISA, respectively. Levels of metals in the exposure chambers were quantified by inductively coupled plasma mass spectrometry. MT expressions were quantified by immunohistochemistry in the lungs and liver of C57Bl/6 mice exposed to CS, HNBT or air (1 h, twice a day for five days: via inhalation). While both CS and HBNT exposures increased cell death, CS led to a higher number of necrotic cells, increased the production of ROS, NO, inflammatory cytokines and MTs when compared to HNBT-exposed cells, and led to a higher expression of MTs in mice. CS released higher amounts of metals. CS and HNBT exposures decreased PMA-induced interleukin-2 (IL-2) secretion and impaired Jurkat proliferation, effects also seen in cells exposed to nicotine. Although HNBT vapor does not activate T cells as CS does, exposure to both HNBT and CS suppressed proliferation and IL-2 release, a pivotal cytokine involved with T cell proliferation and tolerance, and this effect may be related to nicotine content in both products.
显示更多 [+] 显示较少 [-]Quantifying the high resolution seasonal emission of air pollutants from crop residue burning in India 全文
2021
Sahu, Saroj Kumar | Mangaraj, Poonam | Beig, Gufran | Samal, Anuja | Chinmay Pradhan, | Dash, Swetaleena | Tyagi, Bhishma
Biomass burning, a recurring global phenomenon is also considered an environmental menace, making headlines every year in India with onset of autumn months. Agriculture is demographically the broadest economic sector and plays a significant role in the overall socio-economic fabric of India. Hence, disposal of crop residue is done mainly by burning leading to deterioration of air quality. Residue burning in parts of India is blamed for changing air quality in nearby cities. The spatial distribution of these emissions has always been a challenge due to various data constraints. We hereby present a comprehensive spatially resolved seasonal high resolution gridded (∼10 km × ∼10 km) emission inventory of major pollutants from crop residue burning source in India for the latest year 2018. The winter months contributes almost around ∼50% of total emission followed by summer (∼48%), which is the prime cause of changing air quality in nearby cities. Among all the crops; rice, wheat, maize and sugarcane accounts ∼90% of total PM₁₀ load in the country. The estimated emission for PM₂.₅, PM₁₀, BC and OC, CO, NOx, SO₂, VOC, CH₄ and CO₂ are found to 990.68 Gg/yr, 1231.26 Gg/yr, 123.33 Gg/yr, 410.99 Gg/yr, 11208.18 Gg/yr, 484.55 Gg/yr, 144.66 Gg/yr, 1282.95 Gg/yr, 785.56 Gg/yr and 262051.06 Gg/yr respectively. The cropping pattern and its role in different geographic regions are analysed to identify all potential emission hotspots regions scattered across the country. The developed gridded emissions inventory is envisaged to serve as an important input to regional atmospheric chemistry transport model to better quantify its contribution in deteriorating air quality in various regions of India, paving the way to policy makers to better plan the mitigation and control strategies. The developed fundamental tool is likely to be useful for air quality management.
显示更多 [+] 显示较少 [-]