细化搜索
结果 611-620 的 7,282
Revisited a sediment quality triad approach in the Korean coastal waters: Past research, current status, and future directions 全文
2022
Lee, Junghyun | Khim, Jong Seong
We present a comprehensive review of the sediment quality triad (SQT) assessment studies in Korea. The bibliographic analysis was applied to evaluate how approaches in sediment assessment have evolved. A meta-analysis was performed, to evaluate potential risks of sedimentary persistent toxic substances (PTSs) reported in Korean coastal waters. Within the framework, we identified and discussed current status and spatiotemporal trends in contamination of both classic and emerging PTSs over the recent decadal period. Out of 26 target regions in Korea, five hotspots (Sihwa, Masan, Ulsan, Taean, and Gwangyang) of concern could be identified. Four of those regions have been designated as Specially-Managed Sea Area under the implementation of Total Pollution Load Management System in Korea, except for Taean coast (oil spill site). Meantime, we could identify three stepwise research phases based on a bibliographic analysis; Phase 1 (1995–2008), Phase 2 (2009–2015), and Phase 3 (2016–2020). It is noteworthy that a technical evolution of the SQT assessment by the phase was featured. It was also evidenced that in-depth studies adopting multiple lines of evidence (LOEs) became prevailed upon approaching Phase 3. In a quantitative manner, the toxicity explanatory power of target PTSs increased by about 10% in Phase 3 compared to the earlier phases. The meta-analysis using ratio-to-mean value method applied for the data set having all three LOEs indicated general improvement of sediment qualities in the hotspots. However, their associations quite varied across regions and years, reflecting a dynamicity in oceanographic settings and/or heterogeneity in toxicological effect or benthic community response. At present, SQT assessment adopting the increased LOEs generally supports better assessment. In conclusion, we suggest that future SQT studies globally should reaffirm the utility of the “multiple LOEs approach”, focusing on the identification and management of causative toxicants that driving negative ecological impacts on marine ecosystems.
显示更多 [+] 显示较少 [-]Short-term ambient particulate air pollution exposure, microRNAs, blood pressure and lung function 全文
2022
Cong, Xiaowei | Zhang, Juan | Sun, Rongli | Pu, Yuepu
Ambient particulate air pollution is a risk factor for cardiovascular and respiratory disease, yet the biological mechanisms underlying this association are not well understood. The current study aimed to investigate the mediation role of microRNAs on the association between personal PM₂.₅ exposure and blood pressure and lung function. One hundred and twenty adults (60 truck drivers and 60 office workers) aged 18–46 years were assessed on the June 15, 2008 and at follow-up (1- to 2-weeks later). MicroRNAs were extracted from the peripheral blood samples. Compared to truck drivers, there is a significant increase in FEF₂₅₋₇₅, FEV₁, and FEV₁/FVC and a decrease in PM₂.₅ in office workers (all p < 0.05). According to the Bonferroni corrected threshold p-value < 6.81 × 10⁻⁵ (0.05/734) used, personal PM₂.₅ data showed a significant positive association with miR-644 after the adjustment for age, BMI, smoking status, and habitual alcohol use. The mediation effect of miR-644 on the association between personal PM₂.₅ exposure and FEF₂₅₋₇₅ [B (95%CI) = −1.342 (−2.810, −0.113)], PEF [B (95%CI) = -1.793 (−3.926, −0.195)], and FEV₁/FVC [B (95%CI) = −0.119‰ (−0.224‰, −0.026‰)] was significant only for truck drivers after the adjustment for covariates. There were no similar associations with blood pressure. These results demonstrate microRNAs to potentially mediate association of PM₂.₅ with lung function. Subsequent studies are needed to further elucidate the potential mechanisms of action by which the mediation effect of microRNAs is achieved with this process.
显示更多 [+] 显示较少 [-]Assessing the eco-compatibility of new generation sunscreen products through a combined microscopic-molecular approach 全文
2022
Varrella, Stefano | Danovaro, Roberto | Corinaldesi, Cinzia
There is now unequivocal evidence that sunscreen can severely affect marine ecosystems. However, so far, most studies have focused on the impact of single sunscreen ingredients rather than on the whole sunscreen products, which are released into the marine environment. In the present work, we investigated the ecological impact of six formulations, which represent the “new generation” organic UV filters such as diethylamino hydroxybenzoyl hexyl benzoate (DHHB), methylene bis-benzotriazolyl tetramethylbutylphenol (MBBT), ethylhexyl triazone (EHT), and bis-ethylhexyloxyphenol methoxyphenyl triazine (BEMT), which are progressively replacing the “old generation” organic UV filters (e.g., oxybenzone, octinoxate) banned in several countries of the world. The six formulations tested were characterized by a different combination of ingredients, on a model species particularly sensitive to environmental alterations: the sea urchin, Paracentrotus lividus. We investigated the sea urchin responses both in terms of gene expression and anomalies in embryonic development. We found that all sunscreen products containing only MBBT, DHHB, BEMT, and EHT as UV filters, are more eco-compatible than those also containing also ES, or other ingredients such as emollients and texturizing compounds, which may act synergistically causing molecular stress, morphological anomalies, and ultimately possible death. Overall, the results presented here provide new insights on the effects of sunscreen products based on “new generation” UV filters, and highlights the urgency of testing complete formulations, rather than just specific UV filters to ascertain the eco-compatibility of sunscreen products, to effectively minimize their impact on marine ecosystems.
显示更多 [+] 显示较少 [-]Integration of transcriptomic and proteomic reveals the toxicological molecular mechanisms of decabromodiphenyl ethane (DBDPE) on Pleurotus ostreatus 全文
2022
Li, Wanlun | Wang, Shutao | Chen, Yangyang | Liu, Lu | Hou, Shuying | You, Hong
Decabromodiphenyl ethane (DBDPE), as one of the most widely used new brominated flame retardants (NBFRs), can pose a potential threat to human health and the environment. An integrated transcriptome and proteome was performed for investigating the toxicological molecular mechanisms of Pleurotus ostreatus (P. ostreatus) during the biodegradation of DBDPE at the concentrations of 5 and 20 mg/L. A total of 1193/1018 and 92/126 differentially expressed genes/proteins (DEGs/DEPs) were found, respectively, with DBDPE exposure at 5 and 20 mg/L. These DEGs and DEPs were mainly involved in the cellular process as well as metabolic process. DEPs for oxidation-reduction process and hydrolase activity were up-regulated, and those for membrane, lipid metabolic process and transmembrane transport were down-regulated. The DEGs and DEPs related to some key enzymes were down-regulated, such as NADH dehydrogenase/oxidoreductase, succinate dehydrogenase, cytochrome C1 protein, cytochrome-c oxidase/reductase and ATP synthase, which indicated that DBDPE affected the oxidative phosphorylation as well as tricarboxylic acid (TCA) cycle. Cytochrome P450 enzymes (CYPs) might be involved in DBDPE degradation through hydroxylation and oxidation. Some stress proteins were induced to resist DBDPE toxicity, including major facilitator superfamily (MFS) transporter, superoxide dismutase (SOD), molecular chaperones, heat shock proteins (HSP20, HSP26, HSP42), 60S ribosomal protein and histone H4. The findings help revealing the toxicological molecular mechanisms of DBDPE on P. ostreatus, aiming to improve the removal of DBDPE.
显示更多 [+] 显示较少 [-]Antibiotics-induced changes in intestinal bacteria result in the sensitivity of honey bee to virus 全文
2022
Deng, Yanchun | Yang, Sa | Zhao, Hongxia | Luo, Ji | Yang, Wenchao | Hou, Chunsheng
Antibiotics are omnipresent in the environment due to their widespread use, and they have wide-ranging negative impacts on organisms. Virus resistance differs substantially between domesticated Apis mellifera and wild Apis cerana, although both are commonly raised in China. Here, we investigated whether antibiotics can increase the sensitivity of honey bees to viral infection using the Israeli acute paralysis virus (IAPV) and tetracycline as representative virus and antibiotic. Although IAPV multiplied to lower levels in A. cerana than A. mellifera, resulting in decreased mortality (P < 0.01), there was no significant difference in immune responses to viral infection between the two species. Adult worker bees (A. cerana and A. mellifera) were treated with or without tetracycline to demonstrate the prominent role of gut microbiota against viral infection, and found Lactobacillus played a vital antiviral role in A. cerana. In A. cerana but not A. mellifera, tetracycline treatment reduced clearly bee survival and increased susceptibility to IAPV infection (P < 0.01). Our findings revealed that long-term antibiotic treatment in A. mellifera had altered the native gut microbiome and promoted the sensitivity to viral infection. We highlight the effects of antibiotics exposure on resistance to microbial and viral infection.
显示更多 [+] 显示较少 [-]Simultaneous removal of heterocyclic drugs and total nitrogen from biochemical tailwater by peracetic acid/cobalt-loaded ceramsite-based denitrification biofilter 全文
2022
Li, Tong | Jin, Lili | Zhu, Shanshan | Zhang, Xuxiang | Ren, Hongqiang | Huang, Hui
It is difficult to achieve simultaneous and efficient removal of heterocyclic drugs (HCDs) and total nitrogen (TN) in conventional denitrification biofilter (DNBF). Inspired by the effective degradation of refractory organic matter by cobalt-based advanced oxidation process and the need for in-situ upgrading of DNBF, peracetic acid (PAA)/cobalt-loaded ceramsite-based DNBF system was constructed for the first time to treat biochemical tailwater containing HCDs. Results showed that PAA/Co-DNBF had relatively high removal rates for the four HCDs with the order of CBZ > TMP > SDZ > SMX, and the optimal DNBF was H2 with 150 μg L⁻¹of PAA. Overall, TN and HCDs removal increased by 178%–455% and 2.50%–40.99% respectively. When the influent concentration of NO₃⁻-N, COD and each HCDs of 20 mg/L, 60 mg/L and 20 μg/L, below 15 mg/L of effluent TN and the highest average removal rate of SMX (67.77%) could be achieved, under HRT of 4 h in H2. More even distribution of microbial species and low acute toxicity of effluent were also achieved. More even distribution of microbial species and low acute toxicity of effluent were also achieved. In addition, high extracellular polymeric substance (EPS) content and Gordonia after the addition of PAA contributed to the degradation of HCDs. This study supplied a potentially effective strategy for the treatment of biochemical tailwater containing HCDs and provided new insight into the advance of denitrification technology.
显示更多 [+] 显示较少 [-]Inorganic versus organic fertilizers: How do they lead to methylmercury accumulation in rice grains 全文
2022
Sun, Tao | Xie, Qing | Li, Chuxian | Huang, Jinyong | Yue, Caipeng | Zhao, Xuejie | Wang, Dingyong
Both inorganic and organic fertilizers are widely used to increase rice yield. However, these fertilizers are also found to aggravate mercury methylation and methylmercury (MeHg) accumulation in paddy fields. The aim of this study was to reveal the mechanisms of inorganic and organic fertilizers on MeHg accumulation in rice grains, which are not yet well understood. Potting cultures were conducted in which different fertilizers were applied to a paddy soil. The results showed that both inorganic and organic fertilizers increased MeHg concentrations rather than biological accumulation factors (BAFs) of MeHg in mature rice grains. Inorganic fertilizers, especially nitrogen fertilizer, enhanced the bioavailability of mercury and the relative amount Hg-methylating microbes and therefore intensified mercury methylation in paddy soil and MeHg accumulation in rice grains. Unlike inorganic fertilizers, organic matter (OM) in organic fertilizers was the main reason for the increase of MeHg concentrations in rice grains, and it also could immobilize Hg in soil when it was deeply degraded. The enhancement of MeHg concentrations in rice grains induced by inorganic fertilizers (5.18–41.69%) was significantly (p < 0.05) lower than that induced by organic fertilizers (80.49–106.86%). Inorganic fertilizers led to a larger increase (50.39–99.28%) in thousand-kernel weight than MeHg concentrations (5.18–41.69%), resulting in a dilution of MeHg concentrations in mature rice grains. Given the improvement of soil properties by organic fertilizer, increasing the proportion of inorganic fertilizer application may be a better option to alleviate MeHg accumulation in rice grains and guarantee the rice yield in the agricultural production.
显示更多 [+] 显示较少 [-]Relationship between thyroid hormone parameters and exposure to a mixture of organochlorine pesticides, mercury and nutrients in the cord blood of newborns 全文
2022
Wang, Ju | Cao, Lu-Lu | Gao, Zhen-Yan | Zhang, Hong | Liu, Jun-Xia | Wang, S. S. (Su Su) | Pan, Hui | Yan, Chong-Huai
The fetus is prenatally exposed to a mixture of organochlorine pesticides (OCPs), mercury (Hg), docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and selenium (Se) through maternal seafood consumption in real-life scenario. Prenatal exposure to these contaminants and nutrients has been suggested to affect thyroid hormone (TH) status in newborns, but the potential relationships between them are unclear and the joint effects of the mixture are seldom analyzed. The aim of the study is to investigate the associations of prenatal exposure to a mixture of OCPs, Hg, DHA, EPA and Se with TH parameters in newborns. 228 mother-infant pairs in Shanghai, China were included. We measured 20 OCPs, total Hg, DHA, EPA and Se in cord blood samples as exposure variables. The total thyroxine (TT4), free thyroxine (FT4), total triiodothyronine (TT3), free triiodothyronine (FT3), and thyroid-stimulating hormone (TSH) levels and the FT3/FT4 ratio in cord serum were determined as outcomes. Using linear regression models, generalized additive models and Bayesian kernel machine regression, we found dose-response relationships of the mixture component with outcomes: among the contaminants, p,p'-DDE was the most important positive predictor of TT3, while HCB was predominantly positively associated with FT3 and the FT3/FT4 ratio, indicating different mechanisms underlying these relationships; among the nutrients, EPA was first found to be positively related to the FT3/FT4 ratio. Additionally, we found suggestive evidence of interactions between p,p'-DDE and HCB on both TT3 and FT3, and EPA by HCB interactions for TT3, FT3 and FT3/FT4 ratio. However, the overall effects of the mixture on thyroid hormone parameters were not significant. Our result suggests that prenatal exposure to p,p’-DDE, HCB and EPA as part of a mixture might affect thyroid function of newborns in independent and interactive ways. The potential biological mechanisms merit further investigation.
显示更多 [+] 显示较少 [-]Toxicity and endocrine-disrupting potential of PM2.5: Association with particulate polycyclic aromatic hydrocarbons, phthalate esters, and heavy metals 全文
2022
Zhou, Qinghua | Chen, Jinyuan | Zhang, Junfan | Zhou, Feifei | Zhao, Jingjing | Wei, Xiuzhen | Zheng, Kaiyun | Wu, Jian | Li, Bingjie | Pan, Bingjun
The adverse effects of fine atmospheric particulate matter with aerodynamic diameters of ≤2.5 μm (PM₂.₅) are closely associated with particulate chemicals. In this study, PM₂.₅ samples were collected from highway and industry sites in Hangzhou, China, during the autumn and winter, and their cytotoxicity and pulmonary toxicity and endocrine-disrupting potential (EDP) were evaluated in vitro and in vivo; the particulate polycyclic aromatic hydrocarbons (PAHs), phthalate esters (PAEs), and heavy metals were then characterized. The toxicological results suggested that the PM₂.₅ from highway site induced higher cytotoxicity (cell viability inhibition, intracellular oxidative stress, and cell membrane injury) and pulmonary toxicity (inflammatory response (IR) and oxidative stress (OS)) than the samples from industry site, while the PM₂.₅ from industry site exhibited higher EDP (estrogenic and anti-androgenic activity). The cytotoxicity and pulmonary toxicity of PM₂.₅ in the winter were higher than those in the autumn, while no seasonal difference in the endocrine-disrupting potential was observed (p > 0.05). The Pearson correlation analysis between the biological effects and particulate chemicals revealed that the PM₂.₅-induced inflammatory response and oxidative stress were closely associated with the particulate PAHs and heavy metals (Pearson correlation coefficients: rIR, PAHₛ = 0.822–0.988, rIR, ₕₑₐᵥy ₘₑₜₐₗₛ = 0.895–0.971, rOS, PAHₛ = 0.843–0.986, and rOS, ₕₑₐᵥy ₘₑₜₐₗₛ = 0.887–0.933), while particulate di (2-ethylhexyl)phthalate (DEHP) substantially contributed to the EDP of PM₂.₅ (rEDP, DEHP = 0.981). This study indicated that the toxicity and EDP of PM₂.₅ could vary with the surrounding environment and season, which was closely associated with the variations of particulate chemicals. Further studies are needed to clarify the associations between the harmful effects of PM₂.₅ and other contributing factors.
显示更多 [+] 显示较少 [-]The relationship between greenspace and personal exposure to PM2.5 during walking trips in Delhi, India 全文
2022
Mueller, William | Wilkinson, Paul | Milner, James | Loh, Miranda | Vardoulakis, Sotiris | Petard, Zoë | Cherrie, Mark | Puttaswamy, Naveen | Balakrishnan, Kalpana | Arvind, D.K.
The presence of urban greenspace may lead to reduced personal exposure to air pollution via several mechanisms, for example, increased dispersion of airborne particulates; however, there is a lack of real-time evidence across different urban contexts. Study participants were 79 adolescents with asthma who lived in Delhi, India and were recruited to the Delhi Air Pollution and Health Effects (DAPHNE) study. Participants were monitored continuously for exposure to PM₂.₅ (particulate matter with an aerodynamic diameter of less than 2.5 μm) for 48 h. We isolated normal day-to-day walking journeys (n = 199) from the personal monitoring dataset and assessed the relationship between greenspace and personal PM₂.₅ using different spatial scales of the mean Normalised Difference Vegetation Index (NDVI), mean tree cover (TC), and proportion of surrounding green land use (GLU) and parks or forests (PF). The journeys had a mean duration of 12.7 (range 5, 53) min and mean PM₂.₅ personal exposure of 133.9 (standard deviation = 114.8) μg/m³. The within-trip analysis showed weak inverse associations between greenspace markers and PM₂.₅ concentrations only in the spring/summer/monsoon season, with statistically significant associations for TC at the 25 and 50 m buffers in adjusted models. Between-trip analysis also indicated inverse associations for NDVI and TC, but suggested positive associations for GLU and PF in the spring/summer/monsoon season; no overall patterns of association were evident in the autumn/winter season. Associations between greenspace and personal PM₂.₅ during walking trips in Delhi varied across metrics, spatial scales, and season, but were most consistent for TC. These mixed findings may partly relate to journeys being dominated by walking along roads and small effects on PM₂.₅ of small pockets of greenspace. Larger areas of greenspace may, however, give rise to observable spatial effects on PM₂.₅, which vary by season.
显示更多 [+] 显示较少 [-]