细化搜索
结果 621-630 的 8,088
Interactions between Escherichia coli survival and manganese and iron oxides in water under freeze-thaw 全文
2021
Wang, Xu | Yuan, Weilin | Tao, Jiahui | Xu, Meng | Guo, Ping
Pathogenic survivals were dramatically affected by Fe³⁺ and Mn²⁺ under freeze-thaw (FT), and the dissolutions of manganese and iron oxides (MIOs) were also accelerated under FT. But the mutual influences of pathogenic bacterial survival and MIOs under FT have not been profoundly explored yet. In this work, aqueous systems containing Escherichia coli as well as synthetic ferrihydrite (Fh) and manganese dioxide (MnO₂) were experimented under simulated FT cycles to study the mutual influences of metal oxides and bacteria survival while oxide dissolutions and appearances, bacterial morphology and activities (survival number, cell surface hydrophobicity (CSH) and superoxide dismutase (SOD)) were obtained. The results showed that broken E. coli cells by ice growth were observed, but both oxides promoted E. coli survival under FT stress and prolonged bacterial survival time by 1.2–2.9 times, which were mainly attributed to the release of Fe³⁺ and Mn²⁺ caused by FT. The dissolutions of Fh and MnO₂ under FT, which took place at a low level in absence of E. coli cells, were markedly enhanced with bacterial interferences by 2–8 times and higher dissolved manganese concentrations were detected than iron. This was probably because that concentrated organic matters which were released from broken cells, rejected into unfrozen liquid layer and acted as electron donors and ligands to oxide dissolution. Compared with Fh system, more significant promotion of E. coli survival under FT in MnO₂ systems were found because of more SOD generations associated with high dissolved manganese concentrations and the stronger cellular protection by MnO₂ aggregations. The results suggested that FT significantly influenced the interactions between metal oxides and bacterial in water, resulting to changes in pathogen activity and metal element cycling.
显示更多 [+] 显示较少 [-]The human and ecological risks of neonicotinoid insecticides in soils of an agricultural zone within the Pearl River Delta, South China 全文
2021
Yu, Zimin | Li, Xue-Fang | Wang, Shaorui | Liu, Liang-Ying | Zeng, E. Y. (Eddy Y.)
Neonicotinoid insecticides (NIIs) are extensively used worldwide and frequently detected in the environment. The human and ecological risks associated with the occurrence of NIIs in agricultural zones are of high importance. The present study highlights the regional occurrence and human exposure risks of NIIs in agricultural soil within the Pearl River Delta (PRD), South China. Six neonicotinoids, i.e., imidacloprid, clothianidin, acetamiprid, imidaclothiz, dinotefuran, and flonicamid, were measured in 351 soil samples from Zengcheng, a typical agricultural zone. The soil samples were categorized into three groups based on cultivated plants: vegetables, rice, and fruits. At least one of these neonicotinoid insecticides was detected in 95% of the soil samples. The levels of ∑₆NII (range (median)) were 0.26–390 (23), 0.26–280 (6.1), and 0.26–120 (5.0) ng g⁻¹ dry weight in soil samples from vegetable farms, rice paddies, and fruit farms, respectively. Neonicotinoids were detected more frequently and at statistically higher concentrations in vegetable farms than in both rice paddies and fruit farms. This is likely ascribed to higher application frequencies of NIIs in vegetable farms due to higher planting frequencies. The hazard index values for human exposure to NIIs in the agricultural soils were all below 1, suggesting negligible non-cancer risks. The current residual levels of NIIs in the soils could however pose sub-lethal or acute effects to non-target terrestrial organisms such as earthworms. The present study suggests that more information is needed regarding NIIs contamination in soils from agricultural regions of South China to ensure that human and ecological risk from exposure to these compounds can be fully addressed.
显示更多 [+] 显示较少 [-]Distribution of cyclic volatile methylsiloxanes in drinking water, tap water, surface water, and wastewater in Hanoi, Vietnam 全文
2021
Nu Nguyen, Ha My | Khieu, Hanh Thi | Ta, Ngoc Anh | Le, Huong Quang | Nguyen, Trung Quang | Do, Trung Quang | Hoang, Anh Quoc | Kannan, Kurunthachalam | Tran, Tri Manh
In this study, four cyclic volatile methylsiloxanes (cVMSs) were determined in drinking water, tap water, surface water, and wastewater samples collected from Hanoi metropolitan area, Vietnam, during August to December 2020 (dry season) by using solid phase extraction combined with gas chromatography tandem mass spectrometry. Highest concentrations of cVMSs in the range of 63–7400 ng/L (mean/median: 1840/1310 ng/L) were found in wastewater samples. A significant difference existed in the concentrations of cVMSs between influent and effluent of a wastewater treatment plant. The sum concentrations of four cVMSs in lake water, tap water, and bottled water samples were in the ranges of 67.0–1100 ng/L (mean/median: 350/282 ng/L), 19.8–350 ng/L (12.6/12.3 ng/L), and 2.31–28.1 ng/L (10.3/8.23 ng/L), respectively. Among the four cVMSs, decamethylcyclopentasiloxane (D5) was found at the highest concentrations in all water samples analyzed. The mean exposure doses of cVMSs calculated for adults and children through the consumption of drinking were 0.409 and 0.412 ng/kg-bw/day, respectively. Human exposure to cVMSs calculated through drinking water consumption was significantly lower than that reported for inhalation.
显示更多 [+] 显示较少 [-]Effects of using different exposure data to estimate changes in premature mortality attributable to PM2.5 and O3 in China 全文
2021
Wang, Chunlu | Wang, Yiyi | Shi, Zhihao | Sun, Jinjin | Gong, Kangjia | Li, Jingyi | Qin, Momei | Wei, Jing | Li, Tiantian | Kan, Haidong | Hu, Jianlin
The assessment of premature mortality associated with the dramatic changes in fine particulate matter (PM₂.₅) and ozone (O₃) has important scientific significance and provides valuable information for future emission control strategies. Exposure data are particularly vital but may cause great uncertainty in health burden assessments. This study, for the first time, used six methods to generate the concentration data of PM₂.₅ and O₃ in China between 2014 and 2018, and then quantified the changes in premature mortality due to PM₂.₅ and O₃ using the Environmental Benefits Mapping and Analysis Program-Community Edition (BenMAP-CE) model. The results show that PM₂.₅-related premature mortality in China decreases by 263 (95% confidence interval (CI95): 142–159) to 308 (CI95: 213–241) thousands from 2014 to 2018 by using different concentration data, while O₃-related premature mortality increases by 67 (CI95: 26–104) to 103 (CI95: 40–163) thousands. The estimated mean changes are up to 40% different for the PM₂.₅-related mortality, and up to 30% for the O₃-related mortality if different exposure data are chosen. The most significant difference due to the exposure data is found in the areas with a population density of around 10³ people/km², mostly located in Central China, for both PM₂.₅ and O₃. Our results demonstrate that the exposure data source significantly affects mortality estimations and should thus be carefully considered in health burden assessments.
显示更多 [+] 显示较少 [-]Blood lead, vitamin D status, and albuminuria in patients with type 2 diabetes 全文
2021
Wang, Bin | Wan, Heng | Cheng, Jing | Chen, Yingchao | Wang, Yuying | Chen, Yi | Chen, Chi | Zhang, Wen | Xia, Fangzhen | Wang, Ningjian | Wang, Li | Lu, Yingli
Environmental lead exposure has been linked with reduced kidney function. However, evidence about its role in diabetic kidney damage, especially when considering the nutritional status of vitamin D, is sparse. In this observational study, we investigated the association between low-level lead exposure and urinary albumin-to-creatinine ratio (UACR) and assessed potential impact of vitamin D among 4033 diabetic patients in Shanghai, China. Whole blood lead was measured by graphite furnace atomic absorption spectrometry. Serum 25-hydroxyvitamin D [25(OH)D] was tested using a chemiluminescence immunoassay. The associations of blood lead with UACR and albuminuria, defined as UACR ≥30 mg/g, according to 25(OH)D levels were analyzed using linear and Poisson regression models. A doubling of blood lead level was associated with a 10.7% higher UACR (95% CI, 6.19%–15.5%) in diabetic patients with 25(OH)D < 50 nmol/L, whereas the association was attenuated toward null (2.03%; 95% CI, −5.18% to 9.78%) in those with 25(OH)D ≥ 50 nmol/L. Similarly, the risk ratios of prevalent albuminuria per doubling of blood lead level between the two groups were 1.09 (95% CI, 1.03–1.15) and 0.99 (95% CI, 0.86–1.14), respectively. Joint analysis demonstrated that a combination of high blood lead and low 25(OH)D corresponded to significantly higher UACR. Among diabetic patients with 25(OH)D < 50 nmol/L, the increment of UACR relative to blood lead was more remarkable in those with reduced estimated glomerular filtration rate (<60 mL/min/1.73 m²). These results suggested that higher blood lead levels were associated with increased urinary albumin excretion in diabetic patients with vitamin D deficiency. Further prospective studies are needed to validate our findings and to determine whether vitamin D supplementation yields a benefit.
显示更多 [+] 显示较少 [-]Differential mitochondrial dysregulation by exposure to individual organochlorine pesticides (OCPs) and their mixture in zebrafish embryos 全文
2021
Lee, Hyojin | Ko, Eun | Shin, Sooim | Choi, Moonsung | Kim, Ki-Tae
Organochlorine pesticides (OCPs) have been reported to cause mitochondrial dysfunction. However, most studies reported its mitochondrial toxicity with respect to a single form, which is far from the environmentally relevant conditions. In this study, we exposed zebrafish embryos to five OCPs: chlordane, heptachlor, p,p’-dichlorodiphenyltrichloroethane (p,p’-DDT), β-hexachlorocyclohexane (β-HCH), and hexachlorobenzene (HCB), as well as an equal ratio mixture of these OCPs. We evaluated mitochondrial function, including oxygen consumption, the activity of mitochondrial complexes, antioxidant reactions, and expression of genes involved in mitochondrial metabolism. Oxygen consumption rate was reduced by exposure to chlordane, and β-HCH, linking to the increased activity of specific mitochondrial complex I and III, and decreased GSH level. We found that these mitochondrial dysfunctions were more significant in the exposure to the OCP mixture than the individual OCPs. On the mRNA transcription level, the individual OCPs mainly dysregulated the metabolic cycle (i.e., cs and acadm), whereas the OCP mixture disrupted the genes related to mitochondrial oxidative phosphorylation (i.e., sdha). Consequently, we demonstrate that the OCP mixture disrupts mitochondrial metabolism by a different molecular mechanism than the individual OCPs, which warrants further study to evaluate mitochondrial dysregulation by chronic exposure to the OCP mixture.
显示更多 [+] 显示较少 [-]Exploring common factors influencing PM2.5 and O3 concentrations in the Pearl River Delta: Tradeoffs and synergies 全文
2021
Wu, Jiansheng | Wang, Yuan | Liang, Jingtian | Yao, Fei
Particulate matter with an aerodynamic equivalent dimeter less than 2.5 μm (PM₂.₅) and ozone (O₃) are major air pollutants, with coupled and complex relationships. The control of both PM₂.₅ and O₃ pollution requires the identification of their common influencing factors, which has rarely been attempted. In this study, land use regression (LUR) models based on the least absolute shrinkage and selection operator were developed to estimate PM₂.₅ and O₃ concentrations in China's Pearl River Delta region during 2019. The common factors in the tradeoffs between the two air pollutants and their synergistic effects were analyzed. The model inputs included spatial coordinates, remote sensing observations, meteorological conditions, population density, road density, land cover, and landscape metrics. The LUR models performed well, capturing 54–89% and 42–83% of the variations in annual and seasonal PM₂.₅ and O₃ concentrations, respectively, as shown by the 10-fold cross validation. The overlap of variables between the PM₂.₅ and O₃ models indicated that longitude, aerosol optical depth, O₃ column number density, tropospheric NO₂ column number density, relative humidity, sunshine duration, population density, the percentage cover of forest, grass, impervious surfaces, and bare land, and perimeter-area fractal dimension had opposing effects on PM₂.₅ and O₃. The tropospheric formaldehyde column number density, wind speed, road density, and area-weighted mean fractal dimension index had complementary effects on PM₂.₅ and O₃ concentrations. This study has improved our understanding of the tradeoff and synergistic factors involved in PM₂.₅ and O₃ pollution, and the results can be used to develop joint control policies for both pollutants.
显示更多 [+] 显示较少 [-]Pre-migration artificial light at night advances the spring migration timing of a trans-hemispheric migratory songbird 全文
2021
Smith, Reyd A. | Gagné, Maryse | Fraser, Kevin C.
Artificial light at night (ALAN) is increasing at a high rate across the globe and can cause shifts in animal phenology due to the alteration of perceived photoperiod. Birds in particular may be highly impacted due to their use of extra-retinal photoreceptors, as well as the use of photoperiodic cues to time life events such as reproduction, moult, and migration. For the first time, we used light-logging geolocators to determine the amount of ALAN experienced by long-distance migratory songbirds (purple martin; Progne subis) while at their overwintering sites in South America to measure its potential relationship with spring migration timing. Almost a third of birds (48/155; 31%) were subjected to at least one night with ALAN over 30 days prior to spring migration. Birds that experienced the highest number of nights (10+) with artificial light departed for spring migration on average 8 days earlier and arrived 8 days earlier at their breeding sites compared to those that experienced no artificial light. Early spring migration timing due to pre-migration ALAN experienced at overwintering sites could lead to mistiming with environmental conditions and insect abundance on the migratory route and at breeding sites, potentially impacting survival and/or reproductive success. Such effects would be particularly detrimental to species already exhibiting steep population declines such as purple martins and other migratory aerial insectivores.
显示更多 [+] 显示较少 [-]Effect of oil pollution on the ecological condition of soils and bottom sediments of the arctic region (Yakutia) 全文
2021
Lifshits, Sara | Glyaznetsova, Yuliya | Erofeevskaya, Larisa | Chalaya, Olga | Zueva, Iraida
Oil and petroleum products are known to be among the most widespread soil pollutants. The risk of emergencies is sure to increase greatly in conditions of abnormally low temperatures. Oil and oil products are not only toxic to the environment, but can also have a negative impact on the state of the permafrost zone, accelerating the processes of permafrost degradation. The goal of the research was to study the soils and bottom sediments for oil pollution in the Arctic region of Yakutia. The research was carried out with using the complex of geochemical and microbiological methods of analysis. It had shown that at present oil pollution was mainly concentrated on the objects bearing a high technogenic load. However, some migration of hydrocarbons was observed with melt, seasonal melt and rainwaters, as a result of which the natural background of the nearby territories became technogenic character. In the Arctic conditions for the first time according to the obtained data on geochemical and microbiological studies oxidative destruction of oil pollutants in soil occurred mainly under the influence of physic and chemical environmental factors, not by microbial oxidation. Sluggish processes of mineralization of organic residues and the transformation of oil pollutants by the type of putrefaction led to the colonization of oil-polluted soils of the Arctic with putrefying and pathogenic microorganisms. The purpose of further research will be studying the possibility of intensification of soil remediation processes of technologically disturbed soils at abnormally low temperatures.
显示更多 [+] 显示较少 [-]Comparative responses of cell growth and related extracellular polymeric substances in Tetraselmis sp. to nonylphenol, bisphenol A and 17α-ethinylestradiol 全文
2021
Yang, Qian | Xu, Weihao | Luan, Tiangang | Pan, Tianle | Yang, Lihua | Lin, Li
Estuarine ecosystems near mega-cities are sinks of anthropogenic endocrine disrupting chemicals (EDCs). As the most important primary producer, indigenous microalgae and their secreted extracellular polymeric substances (EPSs) might interact with EDCs and contribute to their fate and risk. Tetraselmis sp. is a representative model of estuarine microalga, for which EDC toxicity and its effects on EPS synthesis have rarely been studied. Through microalgal isolation, algal cell growth tests, EDC removal and the characterization of related EPS profiles, the present work intends to clarify the comparative responses of Tetraselmis sp. to nonylphenol (NP), bisphenol A (BPA) and 17α-ethinylestradiol (EE₂). The results showed that the half inhibitory concentration on cell growth was 0.190–0.313 mg/dm³ for NP, which was one order of magnitude lower than the comparable values for BPA and EE₂ at 2.072–3.254 mg/dm³. Regarding chlorophyll, NP induced its degradation, EE₂ led to its decreased production, and BPA had no obvious effect. Under EDC stress, only the concentrations of colloidal polysaccharides and proteins responded dose-dependently to EE₂. Except for the colloidal fraction in the EE₂ treatment group, the increase in neutral monosaccharides, especially glucose and galactose, was a common response to EDCs. Compared to the recalcitrant BPA, NP underwent abiotic degradation in alga-free water, and EE₂ could be biodegraded in water containing this microalga. The chemical-specific responses of cell growth, chlorophyll and related EPS profiles were driven by the different fates of EDCs, and the underlying mechanism was further discussed. The results obtained in the present work are of critical importance for understanding the fate and effects of different EDCs mediated by microalgae and their related EPSs.
显示更多 [+] 显示较少 [-]