细化搜索
结果 621-630 的 7,290
Cross-sectional and longitudinal relationships between urinary 1-bromopropane metabolite and pulmonary function and underlying role of oxidative damage among urban adults in the Wuhan-Zhuhai cohort in China 全文
2022
Wang, Bin | Fan, Lieyang | Yang, Shijie | Zhou, Min | Mu, Ge | Liu, Wei | Yu, Linling | Yang, Meng | Cheng, Man | Wang, Xing | Qiu, Weihong | Shi, Tingming | Chen, Weihong
1-bromopropane is a US Environmental Protection Agency-identified significant hazardous air pollutant with concerned adverse respiratory effect. We aimed to investigate the relationship between 1-bromopropane exposure and pulmonary function and the underlying role of oxidative damage, which all remain unknown. Pulmonary function and urinary biomarkers of 1-bromopropane exposure (N-Acetyl-S-(n-propyl)-L-cysteine, BPMA) and oxidative damage to DNA (8-hydroxy-deoxyguanosine, 8-OHdG) and lipid (8-iso-prostaglandin-F2α, 8-iso-PGF2α) were measured for 3259 Chinese urban adults from the Wuhan-Zhuhai cohort. The cross-sectional relationship of BPMA with pulmonary function and the joint relationship of BPMA and 8-OHdG or 8-iso-PGF2α with pulmonary function were investigated by linear mixed models. The mediating roles of 8-OHdG and 8-iso-PGF2α were evaluated by mediation analysis. Additionally, a panel of 138 subjects was randomly convened from the same cohort to evaluate the stability of BPMA repeatedly measured in urine samples collected over consecutive three days and intervals of one, two, and three years, and to estimate the longitudinal relationship of BPMA with pulmonary function change in three years. We found each 3-fold increase in BPMA was cross-sectionally related to FVC and FEV₁ reductions by 29.88-mL and 25.67-mL, respectively (all P < 0.05). Joint relationship of BPMA and 8-OHdG rather than 8-iso-PGF2α with reduced pulmonary function was observed. Moreover, 8-OHdG significantly mediated 9.44% of the BPMA-related FVC reduction. Findings from the panel revealed a fair to excellent stability (intraclass correlation coefficient: 0.43–0.79) of BPMA in repeated urines collected over a period of three years. Besides, BPMA was longitudinally related to pulmonary function reduction in three years: compared with subjects with persistently low BPMA level, those with persistently high BPMA level had 79.08-mL/year and 49.80-mL/year declines in FVC and FEV₁, respectively (all P < 0.05). Conclusively, 1-bromopropane exposure might impair pulmonary function of urban adult population, and oxidative DNA damage might be a potential mechanism underlying 1-bromopropane impairing pulmonary function especially FVC.
显示更多 [+] 显示较少 [-]Developmental exposure to chlorpyrifos causes neuroinflammation via necroptosis in mouse hippocampus and human microglial cell line 全文
2022
Du, Ying | Yang, Yongyong | Wang, Yue | Wu, Nana | Tao, Junyan | Yang, Guanghong | You, Mingdan
Neurodevelopmental exposure to chlorpyrifos (CPF) could increase risks for neurological disorders, such as autism spectrum disorder, cognitive impairment, or attention deficit hyperactivity disorder. The potential involvement of microglia reactive to inflammatory stimuli in these neurological disorders has been generally reported. However, the concrete effects and potential mechanisms of microglia dysfunction triggered by developmental CPF exposure remain unclear. Therefore, we established mouse and human embryonic microglial cells (HMC3 cell) models of developmental CPF exposure to evaluate the effects of developmental CPF exposure on neuroinflammation and underlying mechanisms. The results showed that developmental exposure to CPF enhanced the expression of Iba1 in hippocampus. CPF treatment increased inflammatory cytokines levels and TSPO expression in hippocampus and HMC3 cells. The levels of necroptosis and necroptosis-related signaling RIPK/MLKL were increased in hippocampus and HMC3 cells following CPF exposure. Furthermore, the expression of TLR4/TRIF signaling was increased in hippocampus and HMC3 cells subjected to CPF exposure. Notably, the increased levels of TLR4/TRIF signaling, RIPK/MLKL signaling, necroptosis and pro-inflammatory cytokines induced by CPF treatment were remarkably inhibited by TAK-242 (a specific TLR4 inhibitor). Additionally, the necroptosis and pro-inflammatory cytokines production induced by CPF treatment were significantly relieved by Nec-1 (a specific RIPK1 inhibitor). In general, the above results suggested that activated microglia in hippocampus subjected to developmental CPF exposure underwent RIPK1/MLKL-mediated necroptosis regulated by TLR4/TRIF signaling.
显示更多 [+] 显示较少 [-]Tire microplastics exposure in soil induces changes in expression profile of immune-related genes in terrestrial crustacean Porcellio scaber 全文
2022
Dolar, Andraž | Drobne, Damjana | Narat, Mojca | Jemec Kokalj, Anita
Tire particles pose a potential threat to terrestrial organisms because they are deposited in large quantities in the soil by tire wear abrasion, and moreover their chemical complexity poses an additional risk. Microplastics can affect several physiological processes in organisms, including those related to immunity. Therefore, we investigated the expression profile of selected immune-related genes (MnSod, Manganese Superoxide dismutase; Cat, Catalase; CypG, Cyclophilin G; Nos, Nitric oxide synthase; Ppae2a, Prophenoloxidase-activating enzyme 2a; Dscam, Down syndrome cell adhesion molecule; Myd88, Myeloid-differentiation factor 88; Toll4, Toll-like receptor 4; Mas-like, Masquerade-like protein) in haemocytes and the digestive gland hepatopancreas of terrestrial crustacean Porcellio scaber after two different time exposures (4 and 14 days) to tire particles in soil. Our results reveal for the first time the response of P. scaber after microplastic exposure at the transcriptome level. We observed time- and tissue-dependent changes in the expression of the analysed genes, with more pronounced alterations in haemocytes after 14 days of exposure. Some minor changes were also observed in hepatopancreas after 4 days. Changes in the expression profile of the analysed genes are a direct indication of a modulated immune status of the test organism, which, however, does not represent an adverse effect on the test organism under the given conditions. Nevertheless, the question remains whether the observed change in immune status affects the immunocompetence of the test organism.
显示更多 [+] 显示较少 [-]Inhibition of PCDD/Fs in a full-scale hazardous waste incinerator by the quench tower coupled with inhibitors injection 全文
2022
He, Fengyu | Peng, Yaqi | Wang, Fei | Dong, Yuhang | Chen, Ken | Lu, Shengyong
The control of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from the flue gas in hazardous waste incinerators (HWIs) is an intractable problem. To figure out the formation mechanism of PCDD/Fs and reduce the emission, a field study was carried out in a full-scale HWI. Ca(OH)₂ & (NH₄)H₂PO₄ or CH₄N₂S & (NH₄)H₂PO₄ were injected into the quench tower, and the detailed inhibition effect on PCDD/Fs formation by the inhibitors coupled with quench tower was studied. Gas and ash samples were collected to analyze PCDD/Fs. XPS, EDS characterization and Principal component analysis were adopted to further analyze the de novo and precursors synthesis. The PCDD/Fs emissions reduced from 0.135 ng I-TEQ/Nm³ to 0.062 or 0.025 ng I-TEQ/Nm³ after the injection of Ca(OH)₂ & (NH₄)H₂PO₄ or CH₄N₂S & (NH₄)H₂PO₄, respectively. The quench tower was found mainly hindering de novo synthesis by reducing reaction time. CP-route was the dominant formation pathway of PCDD/Fs in quench tower ash. Ca(OH)₂ & (NH₄)H₂PO₄ effectively inhibit precursors synthesis and reduce proportions of organic chlorine from 4.11% to 2.86%. CH₄N₂S & (NH₄)H₂PO₄ show good control effects on both de novo and precursors synthesis by reducing chlorine content and inhibiting metal-catalysts. Sulfur-containing inhibitors can cooperate well with the quench tower to inhibit PCDD/Fs formation and will be effective to reduce dioxins formation in high chlorine flue gas. The results pave the way for further industrial application of inhibition to reduce PCDD/Fs emissions in the HWIs flue gas.
显示更多 [+] 显示较少 [-]Bioaugmented removal of 17β-estradiol, nitrate and Mn(II) by polypyrrole@corn cob immobilized bioreactor: Performance optimization, mechanism, and microbial community response 全文
2022
Gao, Zhihong | Ali, Amjad | Su, Junfeng | Chang, Qiao | Bai, Yihan | Wang, Yue | Liu, Yu
The coexistence of nitrate and endocrine substances (EDCs) in groundwater is of global concern. Herein, an efficient and stable polypyrrole@corn cob (PPy@Corn cob) bioreactor immobilized with Zoogloea sp. was designed for the simultaneous removal of 17β-estradiol (E2), nitrate and Mn(II). After 225 days of continuous operation, the optimal operating parameters and enhanced removal mechanism were explored, also the long-term toxicity and microbial communities response mechanisms under E2 stress were comprehensively evaluated. The results showed that the removal efficiencies of E2, nitrate, and Mn(II) were 84.21, 82.96, and 47.91%, respectively, at the optimal operating conditions with hydraulic retention time (HRT) of 8 h, pH of 6.5 and Mn(II) concentration of 20 mg L⁻¹. Further increased of initial E2 (2 and 3 mg L⁻¹) resulted in the inhibiting effect of denitrification and manganese oxidation, but excellent E2 removal efficiencies maintained, which were associated with the formation and continuous accumulation of biomanganese oxides (BMO). Characterization analysis of biological precipitation demonstrated that adsorption and redox conversion on the BMO surface played key roles in the removal of E2. In addition, different levels of E2 exposure are decisive factors in community evolution, and bioaugmented bacterial communities with Zoogloea as the core group can dynamically adapt to E2 stress. This study offers the possibility to better utilize microbial metabolism and to advance opportunities that depend on microbial physiology and material characterization applications.
显示更多 [+] 显示较少 [-]Supramolecular bioamphiphile facilitated bioemulsification and concomitant treatment of recalcitrant hydrocarbons in petroleum refining industry oily waste 全文
2022
Venkatesan, Swathi Krishnan | Uddin, Maseed | Rajasekaran, Muneeswari | Ramani Kandasamy, | Ganesan, Sekaran
Bioremediation of real-time petroleum refining industry oily waste (PRIOW) is a major challenge due to the poor emulsification potential and oil sludge disintegration efficiency of conventional bioamphiphile molecules. The present study was focused on the design of a covalently engineered supramolecular bioamphiphile complex (SUBC) rich in hydrophobic amino acids for proficient emulsification of hydrocarbons followed by the concomitant degradation of total petroleum hydrocarbons (TPH) in PRIOW using the hydrocarbonoclastic microbial bio-formulation system. The synthesis of SUBC was carried out by pH regulated microbial biosynthesis process and the yield was obtained to be 450.8 mg/g of petroleum oil sludge. The FT-IR and XPS analyses of SUBC revealed the anchoring of hydrophilic moieties of monomeric bioamphiphilic molecules, resulting in the formation of SUBC via covalent interaction. The SUBC was found to be lipoprotein in nature. The maximum loading capacity of SUBC onto surface modified rice hull (SMRH) was achieved to be 45.25 mg/g SMRH at the optimized conditions using RSM-CCD design. The SUBC anchored SMRH was confirmed using SEM, FT-IR, XRD and TGA analyses. The adsorption isotherm models of SUBC onto SMRH were performed. The integrated approach of SUBC-SMRH and hydrocarbonoclastic microbial bio-formulation system, emulsified oil from PRIOW by 92.86 ± 2.26% within 24 h and degraded TPH by 89.25 ± 1.75% within 4 days at the optimum dosage ratio of SUBC-SMRH (0.25 g): PRIOW (1 g): mass of microbial-assisted biocarrier material (0.05 g). The TPH degradation was confirmed by SARA fractional analysis, FT-IR, ¹H NMR and GC-MS analyses. The study suggested that the application of covalently engineered SUBC has resulted in the accelerated degradation of real-time PRIOW in a very short duration without any secondary sludge generation. Thus, the SUBC integrated approach can be considered to effectively manage the hydrocarbon contaminants from petroleum refining industries under optimal conditions.
显示更多 [+] 显示较少 [-]Two-step ball milling-assisted synthesis of N-doped biochar loaded with ferrous sulfide for enhanced adsorptive removal of Cr(Ⅵ) and tetracycline from water 全文
2022
Qu, Jianhua | Zhang, Weihang | Bi, Fuxuan | Yan, Shaojuan | Miao, Xuemei | Zhang, Bo | Wang, Yifan | Ge, Chengjun | Zhang, Ying
Nitrogen-doped biochar loaded with FeS (FeS@NBCBM) was synthesized by two-step ball milling processes. Characterization results revealed that N-doping process successfully introduced pyridinic, pyrrolic, and graphitic N structures, and FeS was subsequently embedded in N-doped biochar (NBCBM). The resultant FeS@NBCBM presented predominant adsorption capacity for Cr(VI) (194.69 mg/g) and tetracycline (TC, 371.29 mg/g) compared with BC (27.28 and 37.89 mg/g) and NBCBM (71.26 and 81.26 mg/g). In addition, the Cr(VI)/TC elimination process by FeS@NBCBM was basically stable with multiple co-existing ions with slight decrease on adsorption performance after three desorption-regeneration cycles. Most importantly, FeS@NBCBM was found to achieve Cr(VI) elimination not only by electrostatic attraction, ion exchange and complexation, but also by electrons-triggered reduction provided by different species of N, Fe²⁺ as well as S(Ⅱ). Meantime, pore filling, hydrogen bonding, and π-π stacking interactions were demonstrated to contribute to TC adsorption. These results suggested the co-modification of N-doping and FeS loading by ball milling as an innovative decorating method for biochar to adsorptive purification of Cr(VI) and TC-contaminated water.
显示更多 [+] 显示较少 [-]PM2.5 drives bacterial functions for carbon, nitrogen, and sulfur cycles in the atmosphere 全文
2022
Liu, Huan | Hu, Zhichao | Zhou, Meng | Zhang, Hao | Zhang, Xiaole | Yue, Yang | Yao, Xiangwu | Wang, Jing | Xi, Chuanwu | Zheng, Ping | Xu, Xiangyang | Hu, Baolan
Airborne bacteria may absorb the substance from the atmospheric particles and play a role in biogeochemical cycling. However, these studies focused on a few culturable bacteria and the samples were usually collected from one site. The metabolic potential of a majority of airborne bacteria on a regional scale and their driving factors remain unknown. In this study, we collected particulates with aerodynamic diameter ≤2.5 μm (PM₂.₅) from 8 cities that represent different regions across China and analyzed the samples via high-throughput sequencing of 16S rRNA genes, quantitative polymerase chain reaction (qPCR) analysis, and functional database prediction. Based on the FAPROTAX database, 326 (80.69%), 191 (47.28%) and 45 (11.14%) bacterial genera are possible to conduct the pathways of carbon, nitrogen, and sulfur cycles, respectively. The pathway analysis indicated that airborne bacteria may lead to the decrease in organic carbon while the increase in ammonium and sulfate in PM₂.₅ samples, all of which are the important components of PM₂.₅. Among the 19 environmental factors studied including air pollutants, meteorological factors, and geographical conditions, PM₂.₅ concentration manifested the strongest correlations with the functional genes for the transformation of ammonium and sulfate. Moreover, the PM₂.₅ concentration rather than the sampling site will drive the distribution of functional genera. Thus, a bi-directional relationship between PM₂.₅ and bacterial metabolism is suggested. Our findings shed light on the potential bacterial pathway for the biogeochemical cycling in the atmosphere and the important role of PM₂.₅, offering a new perspective for atmospheric ecology and pollution control.
显示更多 [+] 显示较少 [-]Substantial yield reduction in sweet potato due to tropospheric ozone, the dose-response function 全文
2022
Holder, Amanda J. | Hayes, Felicity
Impacts of tropospheric ozone on sweet potato (Ipomoea batatas) are poorly understood despite being a staple food grown in locations deemed at risk from ozone pollution. Three varieties of sweet potato were exposed to ozone treatments (peaks of: 30 (Low), 80 (Medium), and 110 (High) ppb) using heated solardomes. Weekly measurements of stomatal conductance (gs) and chlorophyll content (CI) were used to determine physiological responses, along with final yield. gs and CI were reduced with increasing ozone exposure, but effects were partially masked due to elevated leaf senescence and turnover. Yield for the Erato orange and Murasaki varieties was reduced by ∼40% and ∼50% (Medium and High ozone treatments, respectively, vs Low) whereas Beauregard yield was reduced by 58% in both. The DO₃SE (Deposition of Ozone for Stomatal Exchange) model was parameterized for gs in response to light, temperature, vapour pressure deficit and soil water potential. Clear responses of gs to the environmental parameters were found. Yield reductions were correlated with both concentration based AOT40 (accumulated ozone above a threshold of 40 ppb) and flux based POD₆ (accumulated stomatal flux of ozone above a threshold of 6 nmol m⁻ ² s⁻ ¹) metrics (R² 0.66 p = 0.01; and R² 0.44 p = 0.05, respectively). A critical level estimate of a POD₆ of 3 (mmol m⁻² Projected Leaf Area⁻¹) was obtained using the relationship. This study showed that sweet potato yield was reduced by ozone pollution, and that stomatal conductance and chlorophyll content were also affected. Results from this study can improve model predictions of ozone impacts on sweet potato together with associated ozone risk assessments for tropical countries.
显示更多 [+] 显示较少 [-]Contributions of meteorology to ozone variations: Application of deep learning and the Kolmogorov-Zurbenko filter 全文
2022
Sadeghi, Bavand | Ghahremanloo, Masoud | Mousavinezhad, Seyedali | Lops, Yannic | Pouyaei, Arman | Choi, Yunsoo
From hourly ozone observations obtained from three regions⸻Houston, Dallas, and West Texas⸻we investigated the contributions of meteorology to changes in surface daily maximum 8-h average (MDA8) ozone from 2000 to 2019. We applied a deep convolutional neural network and Shapely additive explanation (SHAP) to examine the complex underlying nonlinearity between variations of surface ozone and meteorological factors. Results of the models showed that between 2000 and 2019, specific humidity (38% and 27%) and temperature (28% and 37%) contributed the most to ozone formation over the Houston and Dallas metropolitan areas, respectively. On the other hand, the results show that solar radiation (50%) strongly impacted ozone variation over West Texas during this time. Using a combination of the Kolmogorov-Zurbenko (KZ) filter and multiple linear regression, we also evaluated the influence of meteorology on ozone and quantified the contributions of meteorological parameters to trends in surface ozone formation. Our findings showed that in Houston and Dallas, meteorology influenced ozone variations to a large extent. The impacts of meteorology on West Texas, however, showed meteorological factors had fewer influences on ozone variabilities from 2000 to 2019. This study showed that SHAP analysis and the KZ approach can investigate the contributions of the meteorological factors on ozone concentrations and help policymakers enact effective ozone mitigation policies.
显示更多 [+] 显示较少 [-]