细化搜索
结果 631-640 的 736
A universal method to assess the potential of phosphorus loss from soil to aquatic ecosystems
2010
Pöthig, Rosemarie | Behrendt, Horst | Opitz, Dieter | Furrer, Gerhard
Background, aim, and scope Phosphorus loss from terrestrial to the aquatic ecosystems contributes to eutrophication of surface waters. To maintain the world's vital freshwater ecosystems, the reduction of eutrophication is crucial. This needs the prevention of overfertilization of agricultural soils with phosphorus. However, the methods of risk assessment for the P loss potential from soils lack uniformity and are difficult for routine analysis. Therefore, the efficient detection of areas with a high risk of P loss requires a simple and universal soil test method that is cost effective and applicable in both industrialized and developing countries. Materials and methods Soils from areas which varied highly in land use and soil type were investigated regarding the degree of P saturation (DPS) as well as the equilibrium P concentration (EPC₀) and water-soluble P (WSP) as indicators for the potential of P loss. The parameters DPS and EPC₀ were determined from P sorption isotherms. Results Our investigation of more than 400 soil samples revealed coherent relationships between DPS and EPC₀ as well as WSP. The complex parameter DPS, characterizing the actual P status of soil, is accessible from a simple standard measurement of WSP based on the equation [graphic removed] . Discussion The parameter WSP in this equation is a function of remaining phosphorous sorption capacity/total accumulated phosphorous (SP/TP). This quotient is independent of soil type due to the mutual compensation of the factors SP and TP. Thus, the relationship between DPS and WSP is also independent of soil type. Conclusions The degree of P saturation, which reflects the actual state of P fertilization of soil, can be calculated from the easily accessible parameter WSP. Due to the independence from soil type and land use, the relation is valid for all soils. Values of WSP, which exceed 5 mg P/kg soil, signalize a P saturation between 70% and 80% and thus a high risk of P loss from soil. Recommendations and perspectives These results reveal a new approach of risk assessment for P loss from soils to surface and ground waters. The consequent application of this method may globally help to save the vital resources of our terrestrial and aquatic ecosystems.
显示更多 [+] 显示较少 [-]A new effect residual ratio (ERR) method for the validation of the concentration addition and independent action models
2010
Wang, Li-Juan | Liu, Shu-Shen | Zhang, Jing | Li, Wei-Ying
Background, aim, and scope Glutaraldehyde (GA) often acts as an effective sterilant, disinfectant, and preservative in chemical products. It was found that GA had clearly acute toxicity to aquatic organisms. Furthermore, GA in natural environment could not exist as single species but as complex mixtures. To explore the toxicity interaction between GA and the other environmental pollutant, it is necessary to determine the mixture toxicities of various binary mixtures including GA. Two reference models, concentration addition (CA) and independent action (IA), are often employed to evaluate the mixture toxicity, which can be finished by comparing the concentration-response curves (CRCs) predicted by the reference models with the experimental CRC of the mixture. However, the CRC-based method cannot effectively denote the degree of the deviations from the reference models, especially at very low effect levels. Though the model deviation ratio (MDR) can be used to quantitatively evaluate the deviation of a mixture at EC50 level from the reference model, it is difficult to evaluate the deviations at the lower effect levels. Therefore, the primary aim of this study was to develop a new effect residual ratio (ERR) method to validate the deviations from the reference models at various effect levels. Materials and methods Four chemicals having possible dissimilar mode of actions with GA, acetonitrile (ACN), dodine (DOD), simetryn (SIM), and metham sodium (MET), were selected as another component in the binary mixtures including GA, which constructed four binary mixtures, GA-ACN, GA-DOD, GA-SIM, and GA-MET ones. For each binary mixture, two equipotent mixture rays where the concentration ratios of GA to another mixture component are respectively EC50 and EC5 ones were designed and their toxicities (expressed as a percent inhibition to Photobacterium phosphoreum) were determined by microplate toxicity analysis. The observed concentration-response curve (CRC) of a ray was compared with that predicted by CA or IA model to qualitatively assess the toxicity interaction of the mixture ray. To quantitatively and effectively examine the deviations at various effect levels from the reference models, a new concept, ERR at an effect, was defined, and the ERR was employed to evaluate the deviation at various effects with confidence intervals. Results For three binary mixtures, GA-ACN, GA-DOD, and GA-SIM, the CRCs predicted by IA models were almost located in the 95% confidence intervals of the experimental CRCs for both equipotent mixture rays, which indicated the independent actions between binary mixture components. However, two rays of GA-MET binary mixture displayed a little synergistic action because both CRCs predicted by CA and IA were lower than the experimental CRC. ERR showed the same results as MDR, but ERR results at low effect area were clearer than MDR ones. Discussion In CRC comparison, the deviation of CA (for GA-ACN, GA-DOD, and GA-SIM combinations) or IA (for GA-MET) model from the experimental values could be obviously observed at medium area of the CRC. However, at very low effect levels, both deviations of CA and IA and difference between CA and IA model predictions were not very apparent. Thus, it was difficult to confirm which model, CA or IA, had better predicted power at very low effect levels. MDR in many literatures often refers to a ratio at EC50 level. It was also difficult to reflect not only the deviation fact at the other ECx but also the deviation uncertainty. After we extended the definition of MDR to all ECx and examined the 95% confidence intervals based on observation, the plot of the redefined MDRs at many effect levels could better explain the deviations of CA or IA model from the observation. However, MDRs at very low effect levels did not still reflect the high uncertainty there. The ERRs defined in our paper could explicitly explain the degree of deviation from the reference models and especially reflect the high uncertainty at very low effects. It could be said that the ERR is a better indicator than MDR. Conclusions The new ERR validation method developed in our laboratory could provide us with the information about the toxicity interaction between the mixture components and quantitatively assess the accuracy of the reference models (CA or IA) at whole effect levels. The ERR method conquered the invalidation of the classical CRC comparison method on the deviation decision at low effect levels and also got the advantage over the MDR methods. Recommendations and perspectives It holds promise to become an effective method of hazard and risk assessments of chemical mixtures by well characterizing the uncertainty at very low effect levels.
显示更多 [+] 显示较少 [-]Modeling the overall persistence and environmental mobility of sulfur-containing polychlorinated organic compounds
2010
Mostrąg, Aleksandra | Puzyn, Tomasz | Haranczyk, Maciej
Background, aim, and scope Experimental data on partition coefficients and environmental half-lives of sulfur analogs of polychlorinated organic compounds are scarce. Consequently, little is known about their overall persistence and long-range transport potential, which are the most vital measures in the environmental exposure assessment. We performed Multimedia Modeling of environmental fate and transport to complement this paucity of scientific data. The main aim of our study was to investigate whether the sulfur analogs of polychlorinated dibenzo-p-dioxins, -dibenzofurans, and -diphenylethers are as environmentally persistent and/or mobile as their oxygen counterparts and to propose the environmental exposure-related classification of the examined sulfur compounds. Materials and methods Our study included all possible congeners of the sulfur analogs generated in a combinatorial approach. We predicted (1) lacking data on partition coefficients (log K OW, log K OA and log K AW) for oxygen- and sulfur analogs using Quantitative Structure-Property Relationship (QSPR) modeling and (2) their half-lives in air, water, and soil using US EPA tool ‘The PBT Profiler, v. 1.203 2006'. Subsequently, we introduced these results into multimedia mass balance model ‘The OECD POV and LRTP Screening Tool, v. 2.2'. Results Our study revealed that log K OW and log K OA are increasing by constant values of 0.60 and 1.07, respectively, and the values of log K AW are decreasing by 0.90, whenever one oxygen atom in the carbon skeleton is replaced by sulfur. The persistence ranking performed by the PBT Profiler showed that PCDDs, PCDFs, PCDEs, and their sulfur analogs belong to one half-life class. Discussion The Multimedia Modeling by the means of ‘The OECD POV and LRTP Screening Tool, v. 2.2' suggested that the long-range transport potential depends on the presence/absence of oxygen/sulfur atoms in particular molecules, their substitution pattern and the parent carbon skeleton. Sulfur analogs are generally less mobile than their oxygen analogs, but have similar overall persistence and much higher bioaccumulation potential. Thus, according to the classification of chemicals proposed by Klasmeier et al. (Environ Sci Technol 40:53-60, 2006), some of them show POP-like POV and LRTP characteristics while the rest shows POP-like POV characteristics. Conclusions The sulfur analogs of PCDDs, PCDFs, or PCDEs bring environmental mobility comparable with the risk related to the oxygen ones; they belong to the pollutants of ‘highest' or ‘intermediate' priority. Recommendations and perspectives Further studies that would verify the necessity to include the studied sulfur molecules in the international lists of high-priority environmental pollutants are recommended.
显示更多 [+] 显示较少 [-]Effects of mercury on the activity and community composition of soil ammonia oxidizers
2010
Liu, Yu-Rong | Zheng, Yuan-Ming | Shen, Ju-Pei | Zhang, Li-Mei | He, Ji-Zheng
Purpose Experiments were conducted to examine the effects of mercury (Hg) on soil nitrification activities and the microbial communities of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). Methods The soil samples spiked with different Hg concentrations were incubated for a period of 1, 2, 4, and 8 weeks in triplicate and the potential nitrification rate (PNR) of the samples was determined. The abundance of AOB and AOA was measured after an 8-week incubation by real-time polymerase chain reaction (PCR) assay of the amoA genes, while the community compositions by cloning and sequencing approaches. Results The soil PNR differed with different incubation periods. It tended to decrease with increasing soil Hg concentrations at week 1, basing on which the half-maximal effective concentration (EC50) was 1.59 mg kg⁻¹. There was no significant difference in the abundance of AOB or AOA among the treatments. The AOB community was dominated by Nitrosospira-like sequences and more than 70% of the obtained clones were affiliated with the cluster 3a.2. The percentage of cluster 3a.1 in AOB community appeared to a consistent trend of decreasing with ascending soil Hg concentrations. While all the AOA sequences in the clone libraries were grouped into cluster S (soil and sediment origin). Conclusions This study revealed that Hg could inhibit soil potential nitrification and the extent varied with incubation periods. Soil Hg pollution changed the composition of soil AOB to some extent. These findings will be helpful to recognize the effects of Hg on the activity and community composition of soil ammonia oxidizers.
显示更多 [+] 显示较少 [-]Assessment of low-level metal contamination using the Mediterranean mussel gills as the indicator tissue
2010
Dragun, Zrinka | Erk, Marijana | Ivanković, Dušica | Žaja, Roko | Filipović Marijić, Vlatka | Raspor, Biserka
Purpose The aim of this study was to compare the level of metal contamination in two bays in the middle part of the Eastern Adriatic coastal zone in Croatia using the gills of mussels Mytilus galloprovincialis as indicator tissue. Despite the existing sources of contamination, previous studies with caged mussels only indicated moderate metal contamination of the Kaštela Bay, contrary to the Trogir Bay in which marina and shipyard present a probable source of Cu- and Zn-contamination. Methods The measurements of metallothioneins (MTs) and metals that induce MT synthesis (Cu, Zn, and Cd) were performed in the heat-treated gill cytosol and total proteins (TPs) in the untreated gill cytosol. MTs were determined by differential pulse voltammetry, Cu and Zn by flame atomic absorption spectrometry (AAS), Cd by graphite furnace AAS, and TPs by Bradford spectrophotometric procedure. Results The results collected in four sampling campaigns (autumn periods from 2001 to 2004) indicated that MT levels in mussel gills (expressed on dry mass basis 2.3 ± 0.3 mg g⁻¹) were comparable with basal levels reported in the literature (2.5 ± 0.8 mg g⁻¹). Observed interindividual, temporal, and spatial MT variability could be associated with different confounding factors, such as the time of sampling, total protein concentration, and mussel size rather than cytosolic levels of Cu and Zn. Metal levels, expressed on wet mass basis, in the heat-treated gill cytosol ranged from 1.33 to 11.31 μg g⁻¹ for Zn, from 0.72 to 2.96 μg g⁻¹ for Cu, and from 0.036 to 0.100 μg g⁻¹ for Cd. The highest Zn level was measured at Vranjic (Kaštela Bay)—the site influenced by untreated domestic wastewater, while somewhat increased Zn and the highest Cu levels were found at marina and shipyard locations (Trogir Bay). The highest Cd level was measured at Inavinil (Kaštela Bay). Conclusions The observed association of gill MT levels with several biotic and abiotic factors limits its use as the biomarker of low-level metal exposure. Therefore, the use of the metal concentrations in the heat-treated gill cytosol of Mediterranean mussels should be considered for the assessment of the low-level metal contamination of coastal marine areas.
显示更多 [+] 显示较少 [-]Water-soluble main ions in precipitation over the southeastern Adriatic region: chemical composition and long-range transport
2010
Đorđević, Dragana S. | Tošić, Ivana | Unkašević, Miroslava | Đurašković, Pavle
Background, aim and scope Precipitation samples collected from 1995 to 2000 at meteorological station in the eastern outskirts of Herceg Novi (Montenegro) were analysed on Na⁺, K⁺, Mg²⁺, Ca²⁺, Cl⁻, SO₄ ²⁻, NO₃ ⁻ and NH₄ ⁺. Four-day backward trajectory simulations were conducted during the precipitation period to investigate the regional transport of main ions and their deposition in the region of the southeastern Adriatic Sea. The air mass trajectories were classified into six trajectory categories by the origin and direction of their approach to Herceg Novi. Materials and methods A bottle and funnel with a small net between them was used for sampling at a height of 1.5 m above the ground. The concentrations of Cl⁻, NO₃ ⁻, NH₄ ⁺ and SO₄ ²⁻ were determined spectrophotometrically, the concentrations of Na⁺ and K⁺ were determined by the FAES method and the concentrations of Mg²⁺ and Ca²⁺ by the FAAS method. The factor analysis technique (PCA analysis) based on the calculation of the factors was employed to differentiate the contribution of emission sources to the content of the main ions in the precipitation. The obtained data sets were processed using the SPSS 11.5 statistical program. The Hybrid Single-Particle Lagrangian Integrated Trajectory model was used to study the air origin for the city of Herceg Novi (42°27′N, 18°33′E), Montenegro. Discussion The following origins of the air masses were considered: northern Europe (NE), eastern Europe-northeastern Europe (EE-NE); eastern Mediterranean-southeastern Europe (EM-SE); Africa-Central Mediterranean (A-CM); western Mediterranean (WM); western Europe-Central Europe (WE-CE) and undefined. The heights and frequencies of precipitation coming by air masses from northern Europe and eastern-northeastern Europe are the lowest. On the contrary, the heights and frequencies of precipitation coming by air masses from the western Mediterranean (36.6%) and Africa and the Central Mediterranean (30.6%) are the highest. The sea salt components (Na⁺, Cl⁻, Mg²⁺) are significantly correlated, except for air masses originating from the northern and eastern European regions. Significant correlations between SO₄ ²⁻ and NO₃ ⁻ are found in air masses coming from the western Europe and North Africa, over the Mediterranean. Conclusions The highest volume-weighted mean (VWM) of: SO₄ ²⁻ , NH₄ ⁺ and Mg²⁺ are for precipitation from EE-NE while the highest values of VWM of Cl ⁻ are from WM and of K⁺ are from WE-CE. Long-range transport of Sahara dust is confirmed. Recommendations and perspectives For better estimation of origins of water-soluble ions in precipitation expanding list of analysis on anions of organic acids, such as HCOO⁻, CH₃COO⁻, and C₂H₂COO⁻, could be indicative of volatile organic compounds emitted by vegetation but also traffic. The chemical composition of precipitation together with a study of air backward trajectories is the proper tool for tracking the long-range transport of water-soluble ions and estimating transboundary pollution.
显示更多 [+] 显示较少 [-]Pollution in coastal fog at Alto Patache, Northern Chile
2010
Sträter, Ellen | Westbeld, Anna | Klemm, Otto
Background The Atacama Desert in Northern Chile is one of the most arid places on earth. However, fog occurs regularly at the coastal mountain range and can be collected at different sites in Chile to supply settlements at the coast with freshwater. This is also planned in the fog oasis Alto Patache (20°49′S, 70°09′W). For this pilot study, we collected fog water samples in July and August 2008 for chemical analysis to find indications for its suitability for domestic use. Methods Fog water samples were taken with a cylindrical scientific fog collector and from the net and the storage tank of a Large Fog Collector (LFC). Results The pHs of advective fog, originating from the stratus cloud deck over the Eastern Pacific, varied between 2.9 and 3.5. Orographic fog, which was formed locally, exhibited a pH of 2.5. About 50% of the total ionic concentration was due to sea salt. High percentages of sulfate and very high enrichment factors (versus sea salt) of heavy metals were found. Both backward trajectories and the enrichment factors indicate that the high concentrations of ions and heavy metals in fog were influenced by anthropogenic activities along the Chilean Pacific Coast such as power plants, mining, and steel industry. Conclusions We found no direct indication for the importance of other sources such as the emission of dimethyl sulfide from the ocean and subsequent atmospheric oxidation for acidity and sulfate or soil erosion for heavy metal concentrations. When fog water was collected by the LFC, it apparently picked up large amounts of dry deposition which accumulated on the nets during fog-free periods. This material is rinsed off the collector shortly after the onset of a fog event with the water collected first. During the first flush, some concentrations of acidity, nitrate, As, and Se, largely exceeded the Chilean drinking water limits. Before any use of fog water for domestic purpose, its quality should be checked on a regular basis. Strategies to mitigate fog water pollution are given.
显示更多 [+] 显示较少 [-]Influence of altitude concerning the contamination of humus soils in the German Alps: a data evaluation approach using PyHasse
2010
Voigt, Kristina | Brüggemann, Rainer | Kirchner, Manfred | Schramm, Karl-Werner
Background, aim and scope In an international project named MONARPOP (Monitoring Network in the Alpine Region for Persistent and other Organic Pollutants), selected chemicals in different environmental media were analysed in the years 2004 and 2005. Seventeen pesticides were chosen and analysed in humus and mineral soil in the German Alps. The samples were taken at different altitudes. Materials and methods In such a rather complex environmental datasets, it is often necessary to compare different sets of criteria and their influence on rankings. In the similarity analysis which is part of the theory of the Hasse diagram technique, we intend to calculate the similarity of different rankings. Furthermore, we perform a so-called dominance-dominance/dominance-separability method, followed by a sensitivity analysis, both subroutines in the newly developed PyHasse programme in order to find out if the concentration of the chemicals can be related to the altitudes at which the samples were taken. Results and discussion It can be demonstrated that the altitude has a considerable influence on the concentration of some organic chemicals in humus: The concentrations of some chemicals increase with the altitude. This increase shows certain irregularities for which several explication attempts including possible effects of atmospheric stratification phenomena in valleys have been made. Conclusion These results should be complemented in further studies with MONARPOP monitoring data from other Alpine countries, e.g. Austria, Switzerland, Italy and Slovenia.
显示更多 [+] 显示较少 [-]Occurrence and temporal variations of TMDD in the river Rhine, Germany
2010
Guedez, Arlen A. | Frömmel, Stephan | Diehl, Peter | Püttmann, Wilhelm
Background, aim, and scope The chemical substance 2,4,7,9-tetramethyl-5-decyne-4,7-diol (TMDD) is a non-ionic surfactant used as an industrial defoaming agent and in various other applications. Its commercial name is Surynol 104® and the related ethoxylates are also available as Surfynol® 420, 440, 465 and 485 which are characterized by different grades of ethoxylation of TMDD at both hydroxyl functional groups. TMDD and its ethoxylates offer several advantages in waterborne industrial applications in coatings, inks, adhesives as well as in paper industries. TMDD and its ethoxylates can be expected to reach the aquatic environment due its widespread use and its physico-chemical properties. TMDD has previously been detected in several rivers of Germany with concentrations up to 2.5 µg/L. In the United States, TMDD was also detected in drinking water. However, detailed studies about its presence and distribution in the aquatic environment have not been carried out so far. The aim of the present study was the analysis of the spatial and temporal concentration variations of TMDD in the river Rhine at the Rheingütestation Worms (443.3 km). Moreover, the transported load in the Rhine was investigated during two entire days and 7 weeks between November 2007 and January 2008. Materials and methods The sampling was carried out at three different sampling points across the river. Sampling point MWL1 is located in the left part of the river, MWL2 in the middle part, and MWL4 in the right part. One more sampling site (MWL3) was run by the monitoring station until the end of 2006, but was put out of service due to financial constrains. The water at the left side of the river Rhine (MWL1) is influenced by sewage from a big chemical plant in Ludwigshafen and by the sewage water from this city. The water at the right side of the river Rhine (MWL4) is largely composed of the water inflow from river Neckar, discharging into Rhine 14.9 km upstream from the sampling point and of communal and industrial wastewater from the city Mannheim. The water from the middle of the river (MWL2) is largely composed of water from the upper Rhine. Water samples were collected in 1-L bottles by an automatic sampler. The water samples were concentrated by use of solid-phase extraction (SPE) using Bond Elut PPL cartridges and quantified by use of gas chromatography-mass spectrometry (GC-MS). The quantification was carried out with the internal standard method. Based on these results, concentration variations were determined for the day profiles and week profiles. The total number of analyzed samples was 219. Results The results of this study provide information on the temporal concentration variability of TMDD in river Rhine in a cross section at one particular sampling point (443.3 km). TMDD was detected in all analyzed water samples at high concentrations. The mean concentrations during the 2 days were 314 ng/L in MWL1, 246 ng/L in MWL2, and 286 ng/L in MWL4. The variation of concentrations was low in the day profiles. In the week profiles, a trend of increasing TMDD concentrations was detected particularly in January 2008, when TMDD concentrations reached values up to 1,330 ng/L in MWL1. The mean TMDD concentrations during the week profiles were 540 ng/L in MWL1, 484 ng/L in MWL2, and 576 ng/L in MWL4. The loads of TMDD were also determined and revealed to be comparable in all three sections of the river. The chemical plant located at the left side of the Rhine is not contributing additional TMDD to the river. The load of TMDD has been determined to be 62.8 kg/d on average during the entire period. By extrapolation of data obtained from seven week profiles the annual load was calculated to 23 t/a. Discussion The permanent high TMDD concentrations during the investigation period indicate an almost constant discharge of TMDD into the river. This observation argues for effluents of municipal wastewater treatment plants as the most likely source of TMDD in the river. Another possible source might be the degradation of ethoxylates of TMDD (Surfynol® series 400), in the WWTPs under formation of TMDD followed by discharge into the river. TMDD has to be considered as a high-production-volume (HPV) chemical based on the high concentrations found in this study. In the United States, TMDD is already in the list of HPV chemicals from the Environmental Protection Agency (EPA). However, the amount of TMDD production in Europe is unknown so far and also the biodegradation rates of TMDD in WWTPs have not been investigated. Conclusions TMDD was found in high concentrations during the entire sampling period in the Rhine river at the three sampling points. During the sampling period, TMDD concentrations remained constant in each part of the river. These results show that TMDD is uniformly distributed in the water collected at three sampling points located across the river. ‘Waves' of exceptionally high concentrations of TMDD could not be detected during the sampling period. These results indicate that the effluents of WWTPs have to be considered as the most important sources of TMDD in river Rhine. Recommendations and perspectives Based also on the occurrence of TMDD in different surface waters of Germany with concentrations up to 2,500 ng/L and its presence in drinking water in the USA, more detailed investigations regarding its sources and distribution in the aquatic environment are required. Moreover, the knowledge with respect to its ecotoxicity and its biodegradation pathway is scarce and has to be gained in more detail. Further research is necessary to investigate the rate of elimination of TMDD in municipal and industrial wastewater treatment plants in order to clarify the degradation rate of TMDD and to determine to which extent effluents of WWTPs contribute to the input of TMDD into surface waters. Supplementary studies are needed to clarify whether the ethoxylates of TMDD (known as Surfynol 400® series) are hydrolyzed in the aquatic environment resulting in formation of TMDD similar to the well known cleavage of nonylphenol ethoxylates into nonylphenols. The stability of TMDD under anaerobic conditions in groundwater is also unknown and should be studied.
显示更多 [+] 显示较少 [-]Surface ozone measurements in the southwest of the Iberian Peninsula (Huelva, Spain)
2010
Adame Carnero, Jose A. | Bolívar, Juan P. | de la Morena, Benito A.
Introduction Photochemical ozone pollution of the lower troposphere (LT) is a very complex process involving meteorological, topographic emissions and chemical parameters. Ozone is considered the most important air pollutant in rural, suburban and industrial areas of many sites in the world since it strongly affects human health, vegetation and forest ecosystems, and its increase during the last decades has been significant. In addition, ozone is a greenhouse gas that contributes to climate change. For these reasons, it is necessary to carry out investigations that determine the behaviour of ozone at different locations. The aim of this work is to understand the levels and temporal variations of surface ozone in an industrial-urban region of the Southwest Iberian Peninsula. Materials and methods The study is based on ozone hourly data recorded during a 6-year period, 2000 to 2005 at four stations and meteorological data from a coastal station. The stations used were El Arenosillo and Cartaya—both coastal stations, Huelva—an urban site and Valverde—an inland station 50 km away from the coastline. The general characteristics of the ozone series, seasonal and daily ozone cycles as well as number of exceedances of the threshold established in the European Ozone Directive have been calculated and analysed. Results Analysis of the meteorological data shows that winter-autumn seasons are governed by the movement of synoptic weather systems; however, in the spring-summer seasons, both synoptic and mesoescale conditions exist. Average hourly ozone concentrations range from 78.5 ± 0.1 μg m⁻³ at Valverde to 57.8 ± 0.2 μg m⁻³ at Huelva. Ozone concentrations present a seasonal variability with higher values in summer months, while in wintertime, lower values are recorded. A seasonal daily evolution has also been found with minimum levels around 08:00 UTC, which occurs approximately 1-1.5 h after sunrise, whereas the maximum is reached at about 16:00 UTC. Furthermore, during summer, the maximum value at El Arenosillo and Valverde stations remains very uniformed until 20:00 UTC. These levels could be due to the photochemical production in situ and also to the horizontal and vertical ozone transport at El Arenosillo from the reservoir layers in the sea and in the case of Valverde, the horizontal transport, thanks to the marine breeze. Finally, the data have been evaluated relative to the thresholds defined in the European Ozone Directive. The threshold to protect human health has been exceeded during the spring and summer months mainly at El Arenosillo and Valverde. The vegetation threshold has also been frequently exceeded, ranging from 131 days at Cartaya up to 266 days at Valverde. Discussion The results in the seasonal and daily variations demonstrate that El Arenosillo and Valverde stations show higher ozone concentrations than Cartaya and Huelva during the spring and summer months. Under meteorological conditions characterized by land-sea breeze circulation, the daytime sea breeze transports the emissions from urban and industrial sources in the SW further inland. Under this condition, the area located downwind to the NE is affected very easily by high ozone concentrations, which is the case for the Valverde station. Nevertheless, according to this circulation model, the El Arenosillo station located at the coast SE from these sources is not directly affected by their emissions. The ozone concentrations observed at El Arenosillo can be explained by the ozone residual layer over the sea, similar to other coastal sites in the Mediterranean basin. Conclusions The temporal variations of the ozone concentrations have been studied at four measurement sites in the southwest of the Iberian Peninsula. The results obtained point out that industrial and urban emissions combined with specific meteorological conditions in spring and summer cause high ozone levels which exceed the recommended threshold limits and could affect the vegetation and human health in this area. Recommendations and perspectives This work is the first investigation related to surface ozone in this region; therefore, the results obtained may be a useful tool to air quality managers and policy-makers to apply possible air control strategies towards a reduction of ozone exceedances and the impact on human health and vegetation. Due to the levels, variability and underlying boundary layer dynamics, it is necessary to extend this research in this geographical area with the purpose of improving the understanding of photochemical air pollution in the Western Mediterranean Basin and in the south of the Iberian Peninsula.
显示更多 [+] 显示较少 [-]