细化搜索
结果 631-640 的 4,921
Early life exposure to triphenyl phosphate: Effects on thyroid function, growth, and resting metabolic rate of Japanese quail (Coturnix japonica) chicks
2019
Guigueno, M.F. | Head, J.A. | Letcher, R.J. | Karouna-Renier, N. | Peters, L. | Hanas, A.M. | Fernie, K.J.
Triphenyl phosphate (TPHP; CAS # 115-86-6), a commonly used plasticizer and flame retardant, has been reported in wild birds and identified as a potential high-risk chemical. We exposed Japanese quail (Coturnix japonica) by in ovo injection, and once hatched, orally each day for 5 days to safflower oil (controls) or TPHP dissolved in vehicle at low (5 ng TPHP/g), mid (50 ng TPHP/g), or high (100 ng TPHP/g) nominal TPHP doses. The low TPHP dose reflected concentrations in wild bird eggs, with mid and high doses 10x and 20x greater to reflect potential increases in environmental TPHP concentrations in the future. Despite no effects on mRNA expression in thyroid-related genes, TPHP exposure enhanced thyroid gland structure in high TPHP males, but in females, suppressed thyroid gland structure and activity (all TPHP females), and circulating free triiodothyronine (high TPHP females only). Consistent with thyroidal changes, and compared to controls, mid and high TPHP chicks experienced significantly reduced resting metabolic rate (≤13%) and growth (≤53%); mid TPHP males and high TPHP females were significantly smaller. The observed thyroidal effects and suppressed growth and metabolic rate of the quail chicks suggest that TPHP may adversely affect the health of wild birds.
显示更多 [+] 显示较少 [-]Cd contamination status and cost-benefits analysis in agriculture soils of Yangtze River basin
2019
Zhou, Xi-Yin | Wang, Xiuru
Soil is a fundamental carrier to support for human living and development and has been polluted seriously by heavy metals. This fact highlights the urgency to realize soil heavy metal pollution prevention through soil heavy metals contamination status assessment and root cause analysis. The previous research tends to focus status assessment and source identification without consideration of economic aspect. This study realized the systematic analysis from status assessment, sources identification and economic-environmental cost-benefits analysis in the Yangtze River basin. Through the spatial difference comparison among the provinces of upper, middle and lower in the Yangtze River basin, it revealed that anthropogenic influence is the main reason caused the current Cd contamination in Yangtze River basin. An interesting finding is that the human caused Cd concentration contribution amount is nearly the same between upstream and downstream which is all about 0.1 mg/kg, while they have quite different economic scale. It indicated that due to the difference of the scale and structure of local economy, and the level of cleaner production and pollution treatment, some regions could own high economic-benefits and low environmental cost, which it is opposite in other regions. The geographic location and natural resources is the root cause to form the environmental cost-economic benefits difference among regions. The convenient traffic promoted downstream to develop large amount and high quality of economy. The natural mineral resources promoted midstream to develop resources based economy. The poor condition of traffic and natural resources has restricted the development of Qinghai province, and made it has the highest Cd pollution intensity. The results would provide effective economic management measures for better soil quality and sustainable development goals achievement.
显示更多 [+] 显示较少 [-]Spatial and temporal variation of inorganic ions in rainwater in Sichuan province from 2011 to 2016
2019
Li, Junlin | Li, Rui | Cui, Lulu | Meng, Ya | Fu, Hongbo
China continues to suffer from severe acid deposition, despite the government implying a series of policies to control air pollution. In this study, rainwater samples were collected from 2011 to 2016 in Sichuan province to measure the pH values and the concentrations of nine inorganic ions (SO₄²⁻, NO₃⁻, NH₄⁺, Cl⁻, Na⁺, Ca²⁺, K⁺, Mg²⁺, and F⁻), and then to investigate their spatiotemporal variations. Besides, the dominant sources for the acidic ions in the precipitation were also revealed by statistical model. The results showed that the rainwater continued to be highly acidic, and the Volume-Weighted Mean (VWM) pH value was calculated to be 5.18 during 2011 and 2016. NH₄⁺, Ca²⁺, NO₃⁻, and SO₄²⁻ were the dominant water-soluble inorganic ions, accounting for 79.2% of the total ions on average. The remarkable decrease in NO₃⁻ and SO₄²⁻ concentrations (from 75.9 to 54.3 μeq L⁻¹ and from 285 to 145 μeq L⁻¹, respectively) resulted in an increase in the pH value of rainwater from 5.24 in 2011 to 5.70 in 2016. The concentrations of SO₄²⁻, NO₃⁻, F⁻, Na⁺, and K⁺ showed remarkably seasonal variation, with the highest value observed in winter, followed by spring and autumn, and the lowest value observed in summer. High VWM concentration of these ions in winter were mainly due to adverse meteorological conditions (e.g., rare rainfall, lower planetary boundary height, and stagnant air) and intensive anthropogenic emissions. SO₄²⁻, NO₃⁻, and F⁻ ions peaked in the southeastern Sichuan province, which is a typical industrial region. NH₄⁺ concentrations decreased from 268 μeq L⁻¹ in the east to 10.4 μeq L⁻¹ in the western Sichuan province, which could be related to the development of agriculture in the eastern Sichuan province. Ca²⁺ peaked in southeastern Sichuan province due to intensive construction activities and severe stone desertification. On the basis of Positive Matrix Factorization (PMF) analysis, four sources of inorganic ions in rainwater were identified, including anthropogenic source, crust, biomass burning, and aging sea salt aerosol. Geographically Weighted Regression (GWR) was used to find the spatial correlations between the socio-economic factors and ions in the rainwater. At the regional scale, the influence of fertilizer consumption and Gross Agricultural Production (GAP) on NH₄⁺ increased from east to west; moreover the influence of Gross Industrial Production (GIP) on SO₄²⁻ and NO₃⁻ also increased.
显示更多 [+] 显示较少 [-]Nitrogen variations during the ice-on season in the eutrophic lakes
2019
Yang, Tingting | Hei, Pengfei | Song, Jindong | Zhang, Jing | Zhu, Zhongfan | Zhang, Yingyuan | Yang, Jing | Liu, Chunlan | Jin, Jun | Quan, Jin
Nitrogen accumulation in sediments, and the subsequent migration and transformations between sediment and the overlying water, plays an important role in the lake nitrogen cycle. However, knowledge of these processes are largely confined to ice-free seasons. Recent research under ice has mainly focused on the water eco-environmental effects during winter. Sediment N accumulation during the ice-on season and its associated eco-environmental impacts have never been systematically investigated. To address these knowledge gaps, we chose Wuliangsu Lake in China as a case study site, taking advantage of the spatial disparity between the 13 semi-separated sub-lakes. Based on samples of 35 sampling sites collected before, in the middle, and at the end of ice-on season separately, we performed a quantitative analysis of under-ice lake N accumulation and water-sediment N exchange by analyzing N fraction variations. Hierarchical Cluster Analysis and Relevance Analysis were used to help elucidate the main causes and implications of under-ice N variation. Our results clearly show that existing studies have underestimated the impact of under-ice N accumulation on the lake ecology throughout year: 1) Sediment N accumulated 2–3 times more than that before winter; 2) residual nitrogen (Res-N) contributed to the majority of the accumulated sediment N and was mainly induced by the debris of macrophytes; 3) total available nitrogen (TAN) was the most easily exchanged fractions between sediment and water, and it mainly affected the water environment during winter; 4) the Res-N accumulation during the ice-on season may have a strong impact on the eco-environment in the subsequent seasons. Our research is valuable for understanding the mechanism of internal nutrient cycle and controlling the internal nitrogen pollution, especially in shallow seasonally-frozen lakes that have long suffered from macrophyte-phytoplankton co-dominated eutrophication.
显示更多 [+] 显示较少 [-]Removing mercury from aqueous solution using sulfurized biochar and associated mechanisms
2019
Park, Jong Hwan | Wang, Jim J. | Zhou, Baoyue | Mikhael, Joseph E.R. | DeLaune, R. D.
Biochar has been used to remove heavy metals from aqueous solutions. In this study, a sulfurized wood biochar (SWB) by direct impregnation with elemental sulfur was produced and evaluated along with pristine wood biochar (WB) for adsorption characteristics and mechanism of mercury. Mercury adsorption by WB and SWB was well described by Langmuir model and pseudo second order model and the maximum adsorption capacities of WB and SWB were 57.8 and 107.5 mg g⁻¹, respectively. Intraparticle diffusion model showed that mercury adsorption was fast due to boundary layer and slow adsorption due to diffusion into biochar pores. Although, mercury adsorption by both WB and SWB was predominantly influenced by the pH, temperature, salt concentration, and biochar dosage, the SWB showed a relatively stable mercury adsorption compared to WB under different conditions, suggesting the strong affinity of SWB for mercury. The XPS analysis showed different adsorption mechanisms of mercury between WB and SWB. In particular, mercury adsorption in WB was due to Hg-Cπ bond formation and interaction with carboxyl and hydroxyl groups, whereas in SWB it is primarily due to mercury interaction with C-SOₓ-C and thiophenic groups in addition to Hg-Cπ bond formation and interaction with carboxyl groups. The SEM-EDS mapping also demonstrated that mercury in SWB was related to carbon, oxygen and sulfur. Overall, the sulfurized biochar was effective for removing mercury from aqueous solution, and its direct production through pyrolysis with elemental sulfur impregnation of wood chips could make it an economic option as absorbent for treating mercury-rich wastewater.
显示更多 [+] 显示较少 [-]Assessment of ultrafine particles in primary schools: Emphasis on different indoor microenvironments
2019
Slezakova, Klara | Fernandes, Eduardo de Oliveira | Pereira, Maria do Carmo
Due to the negative health impacts, significant efforts have been directed towards investigating ultrafine particle (UFP) exposure in various indoor environments. As children spend approximately one third of their time in schools, educatory environments deserve particular attention; however, majority of past research has focused on UFP assessment in classrooms. Thus, this work aims to expand the characterization of UFP in primary schools by considering different indoor and outdoor school microenvironments and estimating inhalation doses for the respective students (6–11yrs old). Real-time UFP measurements were daily conducted (9:00–17:30) in 20 primary schools in Oporto (January–April 2014; October–February 2015) in classrooms, canteens, gyms, libraries, and concurrently outdoors. Overall, UFP concentrations showed large temporal and spatial variations. For classrooms (n = 73), median UFP (1.56 × 10³–16.8 × 10³ # cm⁻³) were lower than the corresponding levels in ambient air of schools (1.79 × 10³–24.1 × 10³ # cm⁻³). Outdoor emissions contributed to indoor UFP (indoor-to-outdoor ratios I/O of 0.0.30–0.85), but ventilation, room characteristics and its occupancy were identified as important parameters contributing to overall indoor UFP levels. Considering specific indoor school microenvironments, canteens were the microenvironment with the highest UFP levels (5.47 × 10³–36.4 × 10³ # cm⁻³), cooking conducted directly on school grounds resulted in significantly elevated UFP in the respective classrooms (p < 0.05); the lowest UFP were found in libraries (4.45 × 10³–8.50 × 10³ # cm⁻³) mostly due to the limited occupancies. Although students spend majority of their school time in classrooms (66–71%), classroom exposure was not consistently the predominant contributor to school total UFP inhalation dose (29–75%). Outdoor exposure contributed 23–70% of school dose (depending on UFP levels in ambient levels and/or conducted activities) whereas short periods of lunch break accounted for 8–40%. Therefore, when evaluating UFP exposure in educatory settings other microenvironments beyond classrooms should be an integral part of the study.
显示更多 [+] 显示较少 [-]Influence of titanium dioxide nanoparticles on the transport and deposition of microplastics in quartz sand
2019
Cai, Li | He, Lei | Peng, Shengnan | Li, Meng | Tong, Meiping
The influence of titanium dioxide nanoparticles (nTiO₂) on the transport and deposition of polystyrene microplastics (MPs) in saturated quartz sand was investigated in NaCl solutions with ionic strengths from 0.1 to 10 mM at two pH conditions (pH 5 and 7). Three different-sized polystyrene (PS) MPs (diameter of 0.2, 1, and 2 μm) were concerned in present study. We found that for all three different-sized MPs in NaCl solutions (0.1, 1 and 10 mM) at both pH 5 and 7, lower breakthrough curves and higher retained profiles of MPs with nTiO₂ copresent in suspensions relative to those without nTiO₂ were obtained, demonstrating that the copresence of nTiO₂ in MPs suspensions decreased MPs transport and increased their deposition in quartz sand under all examined conditions. The mechanisms contributing to the increased MPs deposition with nTiO₂ in suspensions at two pH conditions were different. The formation of MPs-nTiO₂ heteroaggregates and additional deposition sites provided by previously deposited nTiO₂ were found to drive to the increased MPs deposition with nTiO₂ in suspensions at pH 5, while the formation of MPs-nTiO₂ aggregates, additional deposition sites and increased surface roughness induced by the pre-deposited nTiO₂ on quartz sand surfaces were responsible for the enhanced MPs deposition at pH 7. The results give insights to predict the fate and transport of different-sized MPs in porous media in the copresence of engineered nanoparticles.
显示更多 [+] 显示较少 [-]Modeling study of ozone source apportionment over the Pearl River Delta in 2015
2019
Yang, Wenyi | Chen, Huansheng | Wang, Wending | Wu, Jianbin | Li, Jie | Wang, Zifa | Zheng, Junyu | Chen, Duohong
In recent years, the concentration of fine particulate matter has decreased gradually in the Pearl River Delta (PRD) region, but the ozone (O₃) concentration remains high and has become the primary air pollutant. In this study, using a three-dimensional numerical model [nested air quality prediction modeling system (NAQPMS)] coupled with an on-line source apportionment module, the contribution of different source regions and source categories to the O₃ concentration in the PRD region was quantified. A comparison with observation data confirmed that the NAQPMS adequately reproduced surface O₃ concentrations in different seasons. Compared with biogenic emissions, anthropogenic precursors play a dominant role in O₃ production. In Guangzhou city, among different source categories, mobile emission is the largest contributor (accounting for approximately 40%), followed by industry emissions (20%–24%). Regional control measures for solvent use and mobile emissions are effective for reducing O₃ concentration. In the PRD region, self-contribution is more significant in daytime (∼40%) than in nighttime (∼10%) on average. Among the source regions outside PRD, the northern part of Guangdong province, Jiangxi province, and Fujian province are important contributors. Within the PRD region, the self-contribution of each city increases by 12%–32% during O₃ episodes (>80 ppbv) compared with the annual mean contribution. The contribution of the entire PRD region and the entire Guangdong province is 46%–63% and 63%–74% in PRD cities during O₃ episodes. These results indicate that regional collaboration on emission control within PRD or Guangdong province is effective for reducing O₃ episodes in the PRD region. In addition, because long-range transport from regions outside Guangdong province played an important role in the O₃ concentration in the PRD region, long-term emission control measures throughout China in subsequent years should be propitious to further reduce the annual O₃ level and improve air quality in the PRD region.
显示更多 [+] 显示较少 [-]Reproductive toxicity of primary and secondary microplastics to three cladocerans during chronic exposure
2019
Jaikumar, Gayathri | Brun, Nadja R. | Vijver, Martina G. | Bosker, Thijs
Microplastics (<5 mm) are distributed ubiquitously in natural environments. The majority of microplastics in aquatic environments are shown to have rough surfaces due to various weathering processes (secondary microplastics; SMP), while laboratory studies predominantly utilise pristine microplastics (primary microplastics; PMP). Here we present the results from a study comparing the chronic effects of pristine PMP and artificially weathered SMP to three different Cladoceran species (Daphnia magna, Daphnia pulex, Ceriodaphnia dubia). We assessed the impact of PMP and SMP on reproductive output using various measured parameters, including time of first brood, size of first brood, size of first three broods, cumulative number of neonates, total number of broods and terminal length of test animals. Our results show that reproductive output of all species declined in a dose-dependent manner. The No Observed Effect Concentration (NOEC) was less than the lowest tested concentration (102 p/mL) for at least one measured endpoint for all species and both PMP and SMP. Further, it was inferred that species sensitivity varied inversely with body size for most endpoints, resulting in C. dubia being the most sensitive species; and D. magna being the least sensitive species under study. In addition, PMP appeared to have greater toxic potential as compared to SMP. This study is the first to directly compare the chronic toxicity of both pristine and weathered microplastic particles on three freshwater toxicological model organisms. Our results indicate that sensitivity in reproduction and growth to microplastics may differ between species and type of microplastic exposed; highlighting the importance of using multiple species and structural types of particles.
显示更多 [+] 显示较少 [-]Sorption and mobility of metformin and guanylurea in soils as affected by biosolid amendment: Batch and column tests
2019
Briones, Rowena M. | Sarmah, Ajit K.
Recent classification of metformin as an emerging contaminant warrants assessment of its fate and behaviour in the natural environment especially with land-based application of potentially contaminated wastewaters and biosolids. The present study provided further insight into the sorption mechanisms of metformin and its transformation product guanylurea in soil and upon biosolid fortification. Decreased metformin sorption (12.4%) as measured by the effective distribution coefficient (Kdᵉᶠᶠ) was observed with biosolids amendment while significant increase (2500%) in guanylurea sorption was calculated. Analysis of co-solute effects confirmed their contrasting sorption mechanisms with the absence of competitive effects in unamended soil. Results of the column tests were in good agreement with the batch sorption studies as the fitted values of retardation factors decreased and increased for metformin and guanylurea, respectively, upon addition of biosolids. The shapes of the breakthrough curves suggest slower desorption rates for both compounds in unamended soil resulting to non-equilibrium conditions and back-end tailings. However, in biosolid-amended soil columns, these tailings were less pronounced resembling equilibrium transport. Results also demonstrated enhanced mobility of both compounds upon biosolids fortification. The non-equilibrium chemical transport model fitted the measured data well (0.975 > r² > 0.988) especially for unamended soils which suggests the existence of non-equilibrium conditions and rate-limited sorption sites.
显示更多 [+] 显示较少 [-]