细化搜索
结果 641-650 的 6,546
Different responses of nitrite- and nitrate-dependent anaerobic methanotrophs to increasing nitrogen loading in a freshwater reservoir 全文
2020
Shen, Li-dong | Tian, Mao-hui | Cheng, Hai-xiang | Liu, Xin | Yang, Yuling | Liu, Jia-qi | Xu, Jiang-bing | Kong, Yun | Li, Jian-hui | Liu, Yan
Nitrite (NO₂⁻)- and nitrate (NO₃⁻)-dependent anaerobic oxidation of methane (AOM) are two new additions in microbial methane cycle, which potentially act as important methane sinks in freshwater aquatic systems. Here, we investigated spatial variations of community composition, abundance and potential activity of NO₂⁻- and NO₃⁻-dependent anaerobic methanotrophs in the sediment of Jiulonghu Reservoir (Zhejiang Province, China), a freshwater reservoir having a gradient of increasing nitrogen loading from upstream to downstream regions. High-throughput sequencing of total bacterial and archaeal 16S rRNA genes showed the cooccurrence of Candidatus Methylomirabilis oxyfera (M. oxyfera)-like and Candidatus Methanoperedens nitroreducens (M. nitroreducens)-like anaerobic methanotrophs in the examined reservoir sediments. The community structures of these methanotrophs differed substantially between the sediments of upstream and downstream regions. Quantitative PCR suggested higher M. oxyfera-like bacterial abundance in the downstream (8.6 × 10⁷ to 2.8 × 10⁸ copies g⁻¹ dry sediment) than upstream sediments (2.4 × 10⁷ to 3.5 × 10⁷ copies g⁻¹ dry sediment), but there was no obvious difference in M. nitroreducens-like archaeal abundance between these sediments (3.7 × 10⁵ to 4.8 × 10⁵ copies g⁻¹ dry sediment). The ¹³CH₄ tracer experiments suggested the occurrence of NO₂⁻- and NO₃⁻-dependent AOM activities, and their rates were 4.7–14.1 and 0.8–2.6 nmol CO₂ g⁻¹ (dry sediment) d⁻¹, respectively. Further, the rates of NO₂⁻-dependent AOM in downstream sediment were significantly higher than those in upstream sediment. The NO₃⁻ concentration was the key factor affecting the spatial variations of abundance and activity of NO₂⁻-dependent anaerobic methanotrophs. Overall, our results showed different responses of NO₂⁻- and NO₃⁻-dependent anaerobic methanotrophs to increasing nitrogen loading in a freshwater reservoir.
显示更多 [+] 显示较少 [-]Contrasting mixing state of black carbon-containing particles in summer and winter in Beijing 全文
2020
Xie, Conghui | He, Yao | Lei, Lu | Zhou, Wei | Liu, Jingjie | Wang, Qingqing | Xu, Weiqi | Qiu, Yanmei | Zhao, Jian | Sun, Jiaxing | Li, Lei | Li, Mei | Zhou, Zhen | Fu, Pingqing | Wang, Zifa | Sun, Yele
Black carbon (BC) exerts a large impact on climate radiative forcing and public health, and such impacts depend strongly on chemical composition and mixing state. Here a single particle aerosol mass spectrometry (SPA-MS) along with an aerosol chemical speciation monitor was employed to characterize the composition and mixing state of BC-containing particles in summer and winter in Beijing. Approximately 2 million BC-containing particles were chemically analyzed, and the particles were classified into nine and eight different types in summer and winter, respectively, according to mass spectral signatures and composition. The BC-containing particles in summer were dominated by the type of nitrate-related BC (BC-N, 56.7%), while in winter the BC mixed with organic carbon (OC) and sulfate (BCOC-S), and OC and nitrate (BCOC-N) were two dominant types accounting for 44.9% and 16.6%, respectively. The number fractions of BC-N in summer, and BCOC-N and BC-SN in winter increased largely during periods with severe air pollution, suggesting the enhanced secondary formation on BC-containing particles. We also found that the primary emissions of the biomass burning and coal combustion can affect BC mixing state substaintially as indicated by the considerable fraction of BC mixed with levoglucosan and polycyclic aromatic hydrocarbons in winter. Bivariate polar plots and back trajectory analysis indicated that the sulfate-associated BC-containing particles were mostly from regional transport while the nitrate-related type was more from local production. The optical parameter of absorbing Ångström exponents (AAE) of BC was 1.2 and 1.5 in summer and winter, respectively, and the AAE dependence of BC mixing state was also different in the two seasons. While higher fractions of BC-N were observed during lower AAE periods in summer, the variations of dominant OC-related BC-containing particles in winter were fairly stable as a function of AAE.
显示更多 [+] 显示较少 [-]Dynamics of coastal bacterial community average ribosomal RNA operon copy number reflect its response and sensitivity to ammonium and phosphate 全文
2020
Dai, Tianjiao | Zhao, Yanan | Ning, Daliang | Huang, Bei | Mu, Qinglin | Yang, Yunfeng | Wen, Donghui
The nutrient-rich effluent from wastewater treatment plants (WWTPs) constitutes a significant disturbance to coastal microbial communities, which in turn affect ecosystem functioning. However, little is known about how such disturbance could affect the community’s stability, an important knowledge gap for predicting community response to future disturbances. Here, we examined dynamics of coastal sediment microbial communities with and without a history of WWTP’s disturbances (named H1 and H0 hereafter) after simulated nutrient input loading at the low level (5 mg L⁻¹ NH₄⁺-N and 0.5 mg L⁻¹ PO₄³⁻-P) or high level (50 mg L⁻¹ NH₄⁺-N and 5.0 mg L⁻¹ PO₄³⁻-P) for 28 days. H0 community was highly sensitive to both low and high nutrient loading, showing a faster community turnover than H1 community. In contrast, H1 community was more efficient in nutrient removal. To explain it, we found that H1 community constituted more abundant and diversified r-strategists, known to be copiotrophic and fast in growth and reproduction, than H0 community. As nutrient was gradually consumed, both communities showed a succession of decreasing r-strategists. Accordingly, there was a decrease in community average ribosomal RNA operon (rrn) copy number, a recently established functional trait of r-strategists. Remarkably, the average rrn copy number of H0 communities was strongly correlated with NH₄⁺-N (R² = 0.515, P = 0.009 for low nutrient loading; R² = 0.749, P = 0.001 for high nutrient loading) and PO₄³⁻-P (R² = 0.378, P = 0.034 for low nutrient loading; R² = 0.772, P = 0.001 for high nutrient loading) concentrations, while that of H1 communities was only correlated with NH₄⁺-N at high nutrient loading (R² = 0.864, P = 0.001). Our results reveal the potential of using rrn copy number to evaluate the community sensitivity to nutrient disturbances, but community’s historical contingency need to be taken in account.
显示更多 [+] 显示较少 [-]Effects of the organic UV-filter, 3-(4-methylbenzylidene) camphor, on benthic invertebrates and ecosystem function in artificial streams 全文
2020
Campos, Diana | Machado, Ana L. | Cardoso, Diogo N. | Silva, Ana Rita R. | Silva, Patrícia V. | Rodrigues, Andreia C.M. | Simão, Fátima C.P. | Loureiro, Susana | Grabicová, Kateřina | Nováková, Petra | Soares, Amadeu M.V.M. | Pestana, João L.T.
In the last decades, the use of organic ultraviolet-filters (UV-filters) has increased worldwide, and these compounds are now considered emerging contaminants of many freshwater ecosystems. The present study aimed to assess the effects of 3-(4-methylbenzylidene) camphor (4-MBC) on a freshwater invertebrate community and on associated ecological functions. For that, artificial streams were used, and a natural invertebrate benthic community was exposed to sediments contaminated with two concentrations of 4-MBC. Effects were evaluated regarding macroinvertebrate abundance and community structure, as well as leaf decomposition and primary production. Results showed that the macroinvertebrate community parameters and leaf decomposition rates were not affected by 4-MBC exposure. On the other hand, primary production was strongly reduced. This study highlights the importance of higher tier ecotoxicity experiments for the assessment of the effects of low concentrations of organic UV-filters on freshwater invertebrate community structure and ecosystem functioning.
显示更多 [+] 显示较少 [-]COVID-19 prevalence and fatality rates in association with air pollution emission concentrations and emission sources 全文
2020
Hendryx, Michael | Luo, Juhua
The novel coronavirus disease (COVID-19) is primarily respiratory in nature, and as such, there is interest in examining whether air pollution might contribute to disease susceptibility or outcome. We merged data on COVID-19 cumulative prevalence and fatality rates as of May 31, 2020 with 2014–2019 pollution data from the US Environmental Protection Agency Environmental Justice Screen (EJSCREEN), with control for state testing rates, population density, and population covariate data from the County Health Rankings. Pollution data included three types of air emission concentrations (particulate matter<2.5 μm (PM2.5), ozone and diesel particulate matter (DPM)), and four pollution source variables (proximity to traffic, National Priority List sites, Risk Management Plan (RMP) sites, and hazardous waste treatment, storage and disposal facilities (TSDFs)). Results of mixed model linear multiple regression analyses indicated that, controlling for covariates, COVID-19 prevalence and fatality rates were significantly associated with greater DPM. Proximity to TSDFs was associated to greater fatality rates, and proximity to RMPs was associated with greater prevalence rates. Results are consistent with previous research indicating that air pollution increases susceptibility to respiratory viral pathogens. Results should be interpreted cautiously given the ecological design, the time lag between exposure and outcome, and the uncertainties in measuring COVID-19 prevalence. Areas with worse prior air quality, especially higher concentrations of diesel exhaust, may be at greater COVID-19 risk, although further studies are needed to confirm these relationships.
显示更多 [+] 显示较少 [-]Effect of applying calcium peroxide on the accumulation of arsenic in rice plants grown in arsenic-elevated paddy soils 全文
2020
Syu, Chien-Hui | Yu, Chih-Han | Lee, Dar-Yuan
Water management such as drainage for creating aerobic conditions is considered to be an adequate method for reducing the accumulation of arsenic (As) in rice grains; however, it is difficult to conduct drainage operations in some areas that experience a lengthy rainy season as well as in soils with poor drainage. In this regard, application of oxygen-releasing compounds (ORCs) may be an alternative method for maintaining aerobic conditions even under flooding in paddy soils. Therefore, a pot experiment was conducted to investigate the effects of application of an ORC, calcium peroxide (CaO₂), on the growth and accumulation of As in rice plants grown in As-contaminated paddy soils. The rice plants were grown in two soils with different characteristics and As levels, and all of the tested soils were treated with 0, 5, 10, and 20 g CaO₂ kg⁻¹. Results revealed that the concentration of As and the distribution of arsenite in the pore water of all tested soils was reduced by CaO₂ application. In addition, the grain yields increased and the concentration of inorganic As in brown rice decreased by 25–45% upon CaO₂ treatment of low-As-level soils (<16 mg kg⁻¹). However, the effect of CaO₂ application on the accumulation of inorganic As in brown rice in As-enriched soils (>78 mg kg⁻¹) could not found in this study, due to the rice plant suffered from serious As phytotoxicity. It suggests that CaO₂ amendment may be suitable for reducing the As concentration of rice grains grown in low-As-level paddy soils, but for As-enriched soils, the proposed CaO₂ application method is not feasible.
显示更多 [+] 显示较少 [-]Zeolite-supported nanoscale zero-valent iron for immobilization of cadmium, lead, and arsenic in farmland soils: Encapsulation mechanisms and indigenous microbial responses 全文
2020
Li, Zhangtao | Wang, Lu | Wu, Jizi | Xu, Yan | Wang, Fan | Tang, Xianjin | Xu, Jianming | Ok, Yong Sik | Meng, Jun | Liu, Xingmei
Zeolite-supported nanoscale zero-valent iron (Z-NZVI) has great potential for metal(loid) removal, but its encapsulation mechanisms and ecological risks in real soil systems are not completely clear. We conducted long-term incubation experiments to gain new insights into the interactions between metal(loid)s (Cd, Pb, As) and Z-NZVI in naturally contaminated farmland soils, as well as the alteration of indigenous bacterial communities during soil remediation. With the pH-adjusting and adsorption capacities, 30 g kg⁻¹ Z-NZVI amendment significantly decreased the available metal(loid) concentrations by 10.2–96.8% and transformed them into strongly-bound fractions in acidic and alkaline soils after 180 d. An innovative magnetic separation of Z-NZVI from soils followed by XRD and XPS characterizations revealed that B-type ternary complexation, heterogeneous coprecipitation, and/or concurrent redox reactions of metal(loid)s, especially the formation of Cd₃(AsO₄)₂, PbFe₂(AsO₄)₂(OH)₂, and As⁰, occurred only under specific soil conditions. Sequencing of 16S rDNA using Illumina MiSeq platform indicated that temporary shifts in iron-resistant/sensitive, pH-sensitive, denitrifying, and metal-resistant bacteria after Z-NZVI addition were ultimately eliminated because soil characteristics drove the re-establishment of indigenous bacterial community. Meanwhile, Z-NZVI recovered the basic activities of bacterial DNA replication and denitrification functions in soils. These results confirm that Z-NZVI is promising for the long-term remediation of metal(loid)s contaminated farmland soil without significant ecotoxicity.
显示更多 [+] 显示较少 [-]Interaction mechanism of dissolved Cr(VI) and manganite in the presence of goethite coating 全文
2020
Luo, Yao | Ding, Jiayu | Hai, Ju | Tan, Wenfeng | Hao, Rong | Qiu, Guohong
Hexavalent chromium has aroused a series of environmental concerns due to its high mobility and toxicity. Iron and manganese oxides usually coexist in the environments and influence the speciation and geochemical cycling of chromium. However, the interaction mechanism of iron-manganese oxides with dissolved Cr(VI) remains largely unknown. In this work, the interaction processes of dissolved Cr(VI) and manganite in the presence of goethite coating were investigated, and the effects of pH (2.0–9.0) and iron oxide content were also studied. Manganite-goethite composites were formed with uniform micromorphologies in the system of manganite and Fe(II). In the reaction system of single manganite and Cr(VI), manganite could only adsorb but not reduce Cr(VI), with the adsorption amount decreasing at higher pHs. In the reaction system of manganite-goethite composites and Cr(VI), adsorbed Cr(VI) was reduced to Cr(III) by Fe(II) on composites surface. The generated Cr(III) was then retained as Cr(OH)₃ on the mineral surface. Goethite coating suppressed the re-oxidation of newly formed Cr(III) by manganite. The amounts of adsorbed Cr(VI) and generated Cr(III) increased with increasing iron oxide content, and increased first and then decreased with increasing pH. The Cr(III) formation and Cr(VI) adsorption amount reached the maximum at pH 5.0–6.0. The present work highlights the transformation and retention of Cr(VI) by iron-manganese oxides and provides potential implications for the use of such oxides in the remediation of Cr(VI) polluted waters and soils.
显示更多 [+] 显示较少 [-]Cultures of Dinophysis sacculus, D. acuminata and pectenotoxin 2 affect gametes and fertilization success of the Pacific oyster, Crassostrea gigas 全文
2020
Gaillard, Sylvain | Le Goïc, Nelly | Malo, Florent | Boulais, Myrina | Fabioux, Caroline | Zaccagnini, Lucas | Carpentier, Liliane | Sibat, Manoella | Réveillon, Damien | Séchet, Véronique | Hess, Philipp | Hégaret, Hélène
Cultures of Dinophysis sacculus, D. acuminata and pectenotoxin 2 affect gametes and fertilization success of the Pacific oyster, Crassostrea gigas 全文
2020
Gaillard, Sylvain | Le Goïc, Nelly | Malo, Florent | Boulais, Myrina | Fabioux, Caroline | Zaccagnini, Lucas | Carpentier, Liliane | Sibat, Manoella | Réveillon, Damien | Séchet, Véronique | Hess, Philipp | Hégaret, Hélène
Harmful algal blooms (HABs) of toxic species of the dinoflagellate genus Dinophysis are a threat to human health as they are mainly responsible for diarrheic shellfish poisoning (DSP) in the consumers of contaminated shellfish. Such contamination leads to shellfish farm closures causing major economic and social issues. The direct effects of numerous HAB species have been demonstrated on adult bivalves, whereas the effects on critical early life stages remain relatively unexplored. The present study aimed to determine the in vitro effects of either cultivated strains of D. sacculus and D. acuminata isolated from France or their associated toxins (i.e. okadaic acid (OA) and pectenotoxin 2 (PTX2)) on the quality of the gametes of the Pacific oyster Crassostrea gigas. This was performed by assessing the ROS production and viability of the gametes using flow cytometry, and fertilization success using microscopic counts. Oocytes were more affected than spermatozoa and their mortality and ROS production increased in the presence of D. sacculus and PTX2, respectively. A decrease in fertilization success was observed at concentrations as low as 0.5 cell mL⁻¹ of Dinophysis spp. and 5 nM of PTX2, whereas no effect of OA could be observed. The effect on fertilization success was higher when both gamete types were concomitantly exposed compared to separate exposures, suggesting a synergistic effect. Our results also suggest that the effects could be due to cell-to-cell contact. These results highlight a potential effect of Dinophysis spp. and PTX2 on reproduction and recruitment of the Pacific oyster.
显示更多 [+] 显示较少 [-]Cultures of Dinophysis sacculus, D. acuminata and pectenotoxin 2 affect gametes and fertilization success of the Pacific oyster, Crassostrea gigas 全文
2020
Gaillard, Sylvain | Le Goïc, Nelly | Malo, Florent | Boulais, Myrina | Fabioux, Caroline | Zaccagnini, Lucas | Carpentier, Liliane | Sibat, Manoella | Réveillon, Damien | Séchet, Veronique | Hess, Philipp | Hégaret, Helene
Harmful algal blooms (HABs) of toxic species of the dinoflagellate genus Dinophysis are a threat to human health as they are mainly responsible for diarrheic shellfish poisoning (DSP) in the consumers of contaminated shellfish. Such contamination leads to shellfish farm closures causing major economic and social issues. The direct effects of numerous HAB species have been demonstrated on adult bivalves, whereas the effects on critical early life stages remain relatively unexplored. The present study aimed to determine the in vitro effects of either cultivated strains of D. sacculus and D. acuminata isolated from France or their associated toxins (i.e. okadaic acid (OA) and pectenotoxin 2 (PTX2)) on the quality of the gametes of the Pacific oyster Crassostrea gigas. This was performed by assessing the ROS production and viability of the gametes using flow cytometry, and fertilization success using microscopic counts. Oocytes were more affected than spermatozoa and their mortality and ROS production increased in the presence of D. sacculus and PTX2, respectively. A decrease in fertilization success was observed at concentrations as low as 0.5 cell mL−1 of Dinophysis spp. and 5 nM of PTX2, whereas no effect of OA could be observed. The effect on fertilization success was higher when both gamete types were concomitantly exposed compared to separate exposures, suggesting a synergistic effect. Our results also suggest that the effects could be due to cell-to-cell contact. These results highlight a potential effect of Dinophysis spp. and PTX2 on reproduction and recruitment of the Pacific oyster.
显示更多 [+] 显示较少 [-]Laboratory simulation of microplastics weathering and its adsorption behaviors in an aqueous environment: A systematic review 全文
2020
Sun, Yiran | Yuan, Jianhua | Zhou, Tao | Zhao, Youcai | Yu, Fei | Ma, Jie
Microplastics (MPs) pollution has become a global environmental concern. MPs alone and in combination with pollutants can potentially cause significant harm to organisms and human beings. Weathering of MPs under various environmental stresses increases the uncertainty of their environmental fates. Compared with field surveys, laboratory simulation experiments are appropriate to simplify the research procedures and investigate the mechanisms. In this review, the effects of abrasion, solar radiation, chemical and thermal oxidation, microbial adhesion and colonization, and other environmental factors on the MPs and the relative laboratory simulation methods were summarized and discussed. Photo-oxidation and abrasion are the most appliable methods due to easy operation and adjustable weathering degree. Furthermore, the structural and components changes in weathering process and the applied characterization methods were generalized. In addition, one of important environmental behaviors, adsorption of the weathered MPs towards two typical pollutants was analyzed. Finally, three priorities for research were proposed. This paper conducts systematic summarized of the MPs weathering process and provides a reference for future studies to accurately determine the environmental risks of weathering MPs.
显示更多 [+] 显示较少 [-]