细化搜索
结果 671-680 的 762
The variability of processes involved in transgene dispersal--case studies from Brassica and related genera
2009
Jørgensen, Rikke Bagger | Hauser, Thure | D'Hertefeldt, Tina | Andersen, Naja Steen | Hooftman, Danny
Background, aim, and scope We strive to predict consequences of genetically modified plants (GMPs) being cultivated openly in the environment, as human and animal health, biodiversity, agricultural practise and farmers' economy could be affected. Therefore, it is unfortunate that the risk assessment of GMPs is burdened by uncertainty. One of the reasons for the uncertainty is that the GMPs are interacting with the ecosystems at the release site thereby creating variability. This variability, e.g. in gene flow, makes consequence analysis difficult. The review illustrates the great uncertainty of results from gene-flow analysis. Main features Many independent experiments were performed on the individual processes in gene flow. The results comprise information both from laboratory, growth chambers and field trials, and they were generated using molecular or phenotypic markers and analysis of fitness parameters. Monitoring of the extent of spontaneous introgression in natural populations was also performed. Modelling was used as an additional tool to identify key parameters in gene flow. Results The GM plant may affect the environment directly or indirectly by dispersal of the transgene. Magnitude of the transgene dispersal will depend on the GM crop, the agricultural practise and the environment of the release site. From case-to-case these three factors provide a variability that is reflected in widely different likelihoods of transgene dispersal and fitness of introgressed plants. In the present review, this is illustrated through a bunch of examples mostly from our own research on oilseed rape, Brassica napus. In the Brassica cases, the variability affected all five main steps in the process of gene dispersal. The modelling performed suggests that in Brassica, differences in fitness among plant genome classes could be a dominant factor in the establishment and survival of introgressed populations. Discussion Up to now, experimental analyses have mainly focused on studying the many individual processes of gene flow. This can be criticised, as these experiments are normally carried out in widely different environments and with different genotypes, and thus providing bits and pieces difficult to assemble. Only few gene-flow studies have been performed in natural populations and over several plant generations, though this could give a more coherent and holistic view. Conclusion The variability inherent in the processes of gene flow in Brassica is apparent and remedies are wished for. One possibility is to expose the study species to additional experiments and monitoring, but this is costly and will likely not cover all possible scenarios. Another remedy is modelling gene flow. Modelling is a valuable tool in identifying key factors in the gene-flow process for which more knowledge is needed, and identifying parameters and processes which are relatively insensitive to change and therefore require less attention in future collections of data. But the interdependence between models and experimental data is extensive, as models depend on experimental data for their development or testing. Recommendations More and more transgenic varieties are being grown worldwide harbouring genes that might potentially affect the environment (e.g. drought tolerance, salt tolerance, disease tolerance, pharmaceutical genes). This calls for a thorough risk assessment. However, in Brassica, the limited and uncertain knowledge on gene flow is an obstacle to this. Modelling of gene flow should be optimised, and modelling outputs verified in targeted field studies and at the landscape level. Last but not least, it is important to remember that transgene flow in itself is not necessarily a thread, but it is the consequences of gene flow that may jeopardise the ecosystems and the agricultural production. This emphasises the importance of consequence analysis of genetically modified plants.
显示更多 [+] 显示较少 [-]Dispersal and persistence of genetically modified oilseed rape around Japanese harbors
2009
Kawata, Masaharu | Murakami, Kikuko | Ishikawa, Toyohisa
Background, aim, and scope The possibility of gene transfer from genetically modified oilseed rape (OSR) to its cultivated or wild relatives is of concern since its commercial cultivation, because of its potential weediness and impact on the environment. Introgression of modified genes can affect conservation of agricultural crops, because there are many cultivars and wild Brassicaceae that may cross with genetically modified OSR (Brassica napus) in Japan. Japan imports more than 2 million tons of OSR a year from Canada and other countries. Since volunteers of GM OSR were found around harbors in 2004, a lot of feral GM OSR was discovered in Japan. To consider the way how to keep domestic Brassicaceae from GM contamination, we surveyed and analyzed the dispersal and persistence of GM OSR around Japanese harbors. We present the cause and abundance of GM OSR in Japan by this paper. Materials and methods Survey of the feral OSR was performed several times a year at different seasons when domestic OSR either grows or does not around port areas. Detection of herbicide tolerance in feral B. napus was done by test papers that cross react with the modified gene product. Two kinds of herbicide tolerance (glyphosate and glufosinate) were tested. Results The feral B. napus were discovered around all 13 harbors that import rapeseeds from foreign countries. Genetically modified, herbicide-tolerant OSR were frequently found in the surveyed populations. Two kinds of herbicide-tolerant OSR (glyphosate- and glufosinate-tolerant) were discovered in a natural condition 40 km from port to an oil factory where 60,000 tons of OSR seed are processed a year. The cause of voluntary growth of OSR is seed spillage during transportation by trucks from harbors to oil factories and other processing facilities. Some of the feral OSR growing along the roadsides of transport paths exhibited perennial growth spilling their seeds around the places. Alteration of the generation of feral GM OSR was discovered for the first time in Japan as a result of this study. We studied the yearly change of feral OSR abundances focusing on Yokkaichi port over the 4 years since 2004. The rate of GM OSR increases year to year, and reaches nearly 90% in 2008. Discussion The possibility and consequences of gene transfer from the genetically modified OSR to domestic species (B. rapa and B. juncea) were discussed in relation to impact on domestic agriculture and on environments. Evolutional meaning of the gene transfer was also discussed with respect to the gene construct of GM OSR. This study shows the importance of another pathway of modified gene transfer to non-GM relative species by seed transportation in addition to pollen transfer from commercial cultivation of genetically modified OSR. Conclusions and recommendations We identified unintended dispersal and persistence of GM OSR around Japanese harbors that import OSR from Canada and other countries. Both glyphosate- and glufosinate-tolerant feral B. napus were discovered. The cause of volunteer OSR is spillage of the seeds during transportation by truck to oil factory. The feral GM OSR sometimes showed perennial growth in Japanese phonological conditions which are not observed for domestic Brassicaceae. In addition, we confirmed an alteration of generations by feral GM OSR in Japan. The possibility of cross pollination and GM gene introgression to domestic varieties can occur in these environments. To improve the situation, each responsible organization, company, administration, or government should establish measures how to stop the dispersal and persistence of GM OSR in nature. Also, the GM plant developers are responsible for revising this situation.
显示更多 [+] 显示较少 [-]Formation of secondary inorganic aerosols by power plant emissions exhausted through cooling towers in Saxony
2009
Hinneburg, Detlef | Renner, Eberhard | Wolke, Ralf
Background, aim, and scope The fraction of ambient PM₁₀ that is due to the formation of secondary inorganic particulate sulfate and nitrate from the emissions of two large, brown-coal-fired power stations in Saxony (East Germany) is examined. The power stations are equipped with natural-draft cooling towers. The flue gases are directly piped into the cooling towers, thereby receiving an additionally intensified uplift. The exhausted gas-steam mixture contains the gases CO, CO₂, NO, NO₂, and SO₂, the directly emitted primary particles, and additionally, an excess of 'free' sulfate ions in water solution, which, after the desulfurization steps, remain non-neutralized by cations. The precursor gases NO₂ and SO₂ are capable of forming nitric and sulfuric acid by several pathways. The acids can be neutralized by ammonia and generate secondary particulate matter by heterogeneous condensation on preexisting particles. Materials and methods The simulations are performed by a nested and multi-scale application of the online-coupled model system LM-MUSCAT. The Local Model (LM; recently renamed as COSMO) of the German Weather Service performs the meteorological processes, while the Multi-scale Atmospheric Transport Model (MUSCAT) includes the transport, the gas phase chemistry, as well as the aerosol chemistry (thermodynamic ammonium-sulfate-nitrate-water system). The highest horizontal resolution in the inner region of Saxony is 0.7 km. One summer and one winter episode, each realizing 5 weeks of the year 2002, are simulated twice, with the cooling tower emissions switched on and off, respectively. This procedure serves to identify the direct and indirect influences of the single plumes on the formation and distribution of the secondary inorganic aerosols. Results and conclusions Surface traces of the individual tower plumes can be located and distinguished, especially in the well-mixed boundary layer in daytime. At night, the plumes are decoupled from the surface. In no case does the resulting contribution of the cooling tower emissions to PM₁₀ significantly exceed 15 μgm⁻³ at the surface. These extreme values are obtained in narrow plumes on intensive summer conditions, whereas different situations with lower turbulence (night, winter) remain below this value. About 90% of the PM₁₀ concentrations in the plumes are secondarily formed sulfate, mainly ammonium sulfate, and about 10% originate from the primarily emitted particles. Under the assumptions made, ammonium nitrate plays a rather marginal role. Recommendations and perspectives The analyzed results depend on the specific emission data of power plants with flue gas emissions piped through the cooling towers. The emitted fraction of 'free' sulfate ions remaining in excess after the desulfurization steps plays an important role at the formation of secondary aerosols and therefore has to be measured carefully.
显示更多 [+] 显示较少 [-]Historical record of mercury contamination in sediments from the Babeni Reservoir in the Olt River, Romania
2009
Bravo, Andrea Garcia | Loizeau, Jean-Luc | Ancey, Lydie | Ungureanu, Viorel Gheorghe | Dominik, Janusz
Background, aim and scope Mercury (Hg) is a ubiquitous and hazardous contaminant in the aquatic environment showing a strong biomagnification effect along the food chain. The most common transfer path of Hg to humans is contaminated fish consumption. In severely exposed humans, Hg poisoning may lead to damage in the central nervous system. Thus, it is important to examine current and past contamination levels of Hg in aquatic milieu. The Olt River is the largest Romanian tributary of the Danube River. The use of Hg as an electrode in a chlor-alkali plant contributed to the contamination of the aquatic environment in the Rm Valcea region. The purpose of this study was to compare the current state of Hg contamination with the past contamination using a historical record obtained from a dated sediment core from one of the Olt River reservoirs (Babeni) located downstream from the chlor-alkali plant. To our knowledge, no published data on Hg contamination in this region are available. The Babeni Reservoir was selected for this study because it is situated downstream from the chlor-alkali plant, whilst the other reservoirs only retain the pollutants coming from the upstream part of the watershed. Preliminary analyses (unpublished) showed high Hg concentrations in the surface sediment of the Babeni Reservoir. One core was taken in the upstream Valcea Reservoir to provide a local background level of Hg concentrations in sediments. Results and discussion Sediment texture was uniform in the cores from both reservoirs. Laminated sediment structure, without any obvious discontinuities, was observed. Hg concentrations in the sediment core from the Valcea Reservoir were low and constant (0.01-0.08 mg/kg). In Babeni Reservoir sediments, Hg concentrations were very high in the deeper core section (up to 45 mg/kg in the longest core) and decreased to lower concentrations toward the top of the cores (1.3-2.4 mg/kg). This decrease probably reflects technological progress in control of emissions from the Hg-cell-based chlor-alkali industry. Two strong peaks could be distinguished in older sediments. The mean rate of sedimentation (5.9 cm/year) was calculated from the depth of the ¹³⁷Cs Chernobyl peak. This was in good agreement with the sedimentation rate estimated at this site from a bathymetric study. Assuming a constant sedimentation rate, the two Hg peaks would reflect two contamination events in 1987 and 1991, respectively. However, it is also possible that the two peaks belong to the same contamination event in 1987 but were separated by a sediment layer richer in sand and silt. This layer had a low Hg concentration, which can be interpreted as a mass deposition event related to a major flood bringing Hg-free sediments. Conclusions Whilst the chlor-alkali plant partly switched to a cleaner technology in 1999, no obvious decrease of Hg concentrations was observed in recent decade. Results from the sediment core reflected the historical trend of Hg release from the chlor-alkali plant, revealed important contamination episodes and confirmed a legacy of contamination of Hg in recent sediments even if the concentrations of Hg decreased toward the surface due to a more efficient emission control. Recommendations and perspectives Although the Hg concentrations in Babeni Reservoir sediments were extremely high in the late eighties and they remain one order of magnitude higher in the surface sediments than in sediments from the upstream reservoir, little is known about the transfer of Hg to the biota and human population. Our initial measurements indicate the presence of monomethyl-Hg (MMHg) in pore water, but further studies are necessary to evaluate fluxes of MMHg at the sediment-water interface. Samples of fish and hair from various groups of the local population were recently collected to evaluate the potential hazard of Hg contamination to human health in the Rm Valcea region.
显示更多 [+] 显示较少 [-]The International Association for Danube Research (IAD)--portrait of a transboundary scientific NGO
2009
Bloesch, J (Jürg)
Introduction The International Association for Danube Research (IAD), a legal association (Verein) according to Austrian law, presently consists of 13 member countries and 12 expert groups covering all water-relevant scientific disciplines. IAD, founded in 1956, represents a traditional and significant stakeholder in the Danube River Basin, fulfilling an important task towards an integrative water and river basin management requested by the EU Water Framework Directive. Discussion IAD, stretching between basic and applied research, adapted its strategy after the major political changes in 1989. IAD fosters transdisciplinary and transboundary projects to support integrative Danube River protection in line with the governmental International Commission for the Protection of the Danube River (ICPDR) in which IAD has had observer status since 1998. Recent scientific outputs of IAD encompass, amongst others, a water quality map of the Danube and major tributaries, the Sturgeon Action Plan, hydromorphological mapping of the Drava, a macrophyte inventory, and a Mures River study. Further information about IAD can be found on our website http://www.iad.gs.
显示更多 [+] 显示较少 [-]Preparation of calcium oxalate--bromopyrogallol red inclusion sorbent and application to treatment of cationic dye and heavy metal wastewaters
2009
Wang, Hong-Yan | Gao, Hong-Wen
Background, aim, and scope Dye pollutants are a major class of environmental contaminants. Over 100,000 dyes have been synthesized worldwide and more than 700,000 tons are produced annually and over 5% are discharged into aquatic environments. The adsorption or sorption is one of the most efficient methods to remove dye and heavy metal pollutants from wastewater. However, most of the present sorbents often bear some disadvantages, e.g. low sorption capacity, difficult separation of spoil, complex reproduction, or secondary pollution. Development of novel sorbents that can overcome these limitations is desirable. Materials and methods On the basis of the chemical coprecipitation of calcium oxalate (CaC₂O₄), bromopyrogallol red (BPR) was embedded during the growing of CaC₂O₄ particles. The ternary C₂O₄ ²⁻-BPR-Ca²⁺ sorbent was yielded by the centrifugation. Its composition was determined by spectrophotometry and AAS, and its structure and morphology were characterized by powder X-ray diffraction (XRD), laser particle-size analysis, and scanning electron microscopy (SEM). The adsorption of ethyl violet (EV) and heavy metals, e.g. Cu(II), Cd(II), Ni(II), Zn(II), and Pb(II) were carried out and their removal rate determined by spectrophotometry and ICP-OES. The adsorption performance of the sorbent was compared with powder activated carbon. The Langmuir isothermal model was applied to fit the embedment of BPR and adsorption of EV. Results The saturation number of BPR binding to CaC₂O₄ reached 0.0105 mol/mol and the adsorption constant of the complex was 4.70 x 10⁵ M⁻¹. Over 80% of the sorbent particles are between 0.7 and 1.02 μm, formed by the aggregation of the global CaC₂O₄/BPR inclusion grains of 30-50 nm size. Such a material was found to adsorb cationic dyes selectively and sensitively. Ethyl violet (EV) was used to investigate the adsorption mechanism of the material. One BPR molecule may just bind with one EV molecule. The CaC₂O₄/BPR inclusion material adsorbed EV over two times more efficiently than the activated carbon. The adsorption of EV on the CaC₂O₄/BPR inclusion sorbent was complete in only 5 min and the sedimentation complete in 1 h. However, those of EV onto activated carbon took more than 1.5 and 5 h, respectively. The treatment of methylene blue and malachite green dye wastewaters indicated that only 0.4% of the sorbent adsorbed over 80% of color substances. Besides, the material can also adsorb heavy metals by complexation with BPR. Over 90% of Pb²⁺, and approximately 50% of Cd²⁺ and Cu²⁺, were removed in a high Zn²⁺-electroplating wastewater when 3% of the material was added. Eighty-six percent of Cu²⁺, and 60% of Ni²⁺ and Cd²⁺, were removed in a high Cd²⁺-electroplating wastewater. Discussion The embedment of BPR into CaC₂O₄ particles responded to the Langmuir isothermal adsorption. As the affinity ligand of Ca²⁺, BPR with sulfonic groups may be adsorbed into the temporary electric double layer during the growing of CaC₂O₄ particles. Immediately, C₂O₄ ²⁻ captured the Ca²⁺ to form the CaC₂O₄ outer enclosed sphere. Thus, BPR may be released and embedded as a sandwich between CaC₂O₄ layers. The adsorption of EV on the sorbent obeyed the Langmuir isothermal equation and adsorption is mainly due to the ion-pair attraction between EV and BPR. Different from the inclusion sorbent, the activated carbon depended on the specific surface area to adsorb organic substances. Therefore, the adsorption capacity, equilibrium, and sedimentation time of the sorbent are much better than activated carbon. The interaction of heavy metals with the inclusion sorbent responded to their coordination. Conclusions By characterizing the C₂O₄ ²⁻-BPR-Ca²⁺ inclusion material using various modern instruments, the ternary in situ embedment particle, [(CaC₂O₄)₉₅(BPR)] n ²n⁻, an electronegative, micron-sized adsorbent was synthesized. It is selective, rapid, and highly effective for adsorbing cationic dyes and heavy metals. Moreover, the adsorption is hardly subject to the impact of electrolytes. Recommendations and perspectives The present work provides a simple and valuable method for preparing the highly effective adsorbent. If a concentrated BPR wastewater was reused as the inclusion reactant, the sorbent will be low cost. By selecting the inclusion ligand with a special structure, we may prepare some particular functional materials to recover the valuable substances from seriously polluted wastewaters. The recommended method will play a significant role in development of advanced adsorption materials.
显示更多 [+] 显示较少 [-]Response of antioxidant enzymes in Nicotiana tabacum clones during phytoextraction of heavy metals
2009
Lyubenova, Lyudmila | Nehnevajova, Erika | Herzig, Rolf | Schröder, Peter
Background, aim, and scope Tobacco, Nicotiana tabacum, is a widely used model plant for growth on heavy-metal-contaminated sites. Its high biomass and deep rooting system make it interesting for phytoextraction. In the present study, we investigated the antioxidative activities and glutathione-dependent enzymes of different tobacco clones optimized for better Cd and Zn accumulation in order to characterize their performance in the field. Main features The improved heavy metal resistance also makes the investigated tobacco clones interesting for understanding the plant defense enzyme system in general. Freshly harvested plant material (N. tabacum leaves) was used to investigate the antioxidative cascade in plants grown on heavy metal contaminated sites with and without amendments of different ammonium nitrate and ammonium sulfate fertilizers. Materials and methods Plants were grown on heavily polluted soils in north-east Switzerland. Leaves were harvested at the field site and directly deep frozen in liquid N₂. Studies were concentrated on the antioxidative enzymes of the Halliwell-Asada cycle, and spectrophotometric measurements of catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APX, EC 1.11.1.11), superoxide dismutase (SOD, EC 1.15.1.1), glutathione peroxidase (GPX, EC 1.11.1.9), glutathione reductase (GR, EC 1.6.4.2), glutathione S-transferase (GST, EC 2.5.1.18) were performed. Results and discussion We tried to explain the relationship between fertilizer amendments and the activity of the enzymatic defense systems. When tobacco (N. tabacum) plants originating from different mutants were grown under field conditions with varying fertilizer application, the uptake of cadmium and zinc from soil increased with increasing biomass. Depending on Cd and Zn uptake, several antioxidant enzymes showed significantly different activities. Whereas SOD and CAT were usually elevated, several other enzymes, and isoforms of GST were strongly inhibited. Conclusions Heavy metal uptake represents severe stress to plants, and specific antioxidative enzymes are induced at the cost of more general reactions of the Halliwell-Asada cycle. In well-supplied plants, the glutathione level remains more or less unchanged. The lack of certain glutathione S-transferases upon exposure to heavy metals might be problematic in cases when organic pollutants coincide with heavy metal pollution. When planning phytoremediation of sites, mixed pollution scenarios have to be foreseen and plants should be selected according to both, their stress resistance and hyperaccumulative capacity.
显示更多 [+] 显示较少 [-]Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety
2009
Mench, Michel | Schwitzguébel, Jean-Paul | Schroeder, Peter | Bert, Valérie | Gawronski, Stanislaw | Gupta, Satish
Purpose The term “phytotechnologies” refers to the application of science and engineering to provide solutions involving plants, including phytoremediation options using plants and associated microbes to remediate environmental compartments contaminated by trace elements (TE) and organic xenobiotics (OX). An extended knowledge of the uptake, translocation, storage, and detoxification mechanisms in plants, of the interactions with microorganisms, and of the use of “omic” technologies (functional genomics, proteomics, and metabolomics), combined with genetic analysis and plant improvement, is essential to understand the fate of contaminants in plants and food, nonfood and technical crops. The integration of physicochemical and biological understanding allows the optimization of these properties of plants, making phytotechnologies more economically and socially attractive, decreasing the level and transfer of contaminants along the food chain and augmenting the content of essential minerals in food crops. This review will disseminate experience gained between 2004 and 2009 by three working groups of COST Action 859 on the uptake, detoxification, and sequestration of pollutants by plants and consequences for food safety. Gaps between scientific approaches and lack of understanding are examined to suggest further research and to clarify the current state-of-the-art for potential end-users of such green options. Conclusion and perspectives Phytotechnologies potentially offer efficient and environmentally friendly solutions for cleanup of contaminated soil and water, improvement of food safety, carbon sequestration, and development of renewable energy sources, all of which contribute to sustainable land use management. Information has been gained at more realistic exposure levels mainly on Cd, Zn, Ni, As, polycyclic aromatic hydrocarbons, and herbicides with less on other contaminants. A main goal is a better understanding, at the physiological, biochemical, and molecular levels, of mechanisms and their regulation related to uptake-exclusion, apoplastic barriers, xylem loading, efflux-influx of contaminants, root-to-shoot transfer, concentration and chemical speciation in xylem/phloem, storage, detoxification, and stress tolerance for plants and associated microbes exposed to contaminants (TE and OX). All remain insufficiently understood especially in the case of multiple-element and mixed-mode pollution. Research must extend from model species to plants of economic importance and include interactions between plants and microorganisms. It remains a major challenge to create, develop, and scale up phytotechnologies to market level and to successfully deploy these to ameliorate the environment and human health.
显示更多 [+] 显示较少 [-]Implications of metal accumulation mechanisms to phytoremediation
2009
Memon, Abdul R | Schröder, Peter
Background, aim, and scope Trace elements (heavy metals and metalloids) are important environmental pollutants, and many of them are toxic even at very low concentrations. Pollution of the biosphere with trace elements has accelerated dramatically since the Industrial Revolution. Primary sources are the burning of fossil fuels, mining and smelting of metalliferous ores, municipal wastes, agrochemicals, and sewage. In addition, natural mineral deposits containing particularly large quantities of heavy metals are found in many regions. These areas often support characteristic plant species thriving in metal-enriched environments. Whereas many species avoid the uptake of heavy metals from these soils, some of them can accumulate significantly high concentrations of toxic metals, to levels which by far exceed the soil levels. The natural phenomenon of heavy metal tolerance has enhanced the interest of plant ecologists, plant physiologists, and plant biologists to investigate the physiology and genetics of metal tolerance in specialized hyperaccumulator plants such as Arabidopsis halleri and Thlaspi caerulescens. In this review, we describe recent advances in understanding the genetic and molecular basis of metal tolerance in plants with special reference to transcriptomics of heavy metal accumulator plants and the identification of functional genes implied in tolerance and detoxification. Results Plants are susceptible to heavy metal toxicity and respond to avoid detrimental effects in a variety of different ways. The toxic dose depends on the type of ion, ion concentration, plant species, and stage of plant growth. Tolerance to metals is based on multiple mechanisms such as cell wall binding, active transport of ions into the vacuole, and formation of complexes with organic acids or peptides. One of the most important mechanisms for metal detoxification in plants appears to be chelation of metals by low-molecular-weight proteins such as metallothioneins and peptide ligands, the phytochelatins. For example, glutathione (GSH), a precursor of phytochelatin synthesis, plays a key role not only in metal detoxification but also in protecting plant cells from other environmental stresses including intrinsic oxidative stress reactions. In the last decade, tremendous developments in molecular biology and success of genomics have highly encouraged studies in molecular genetics, mainly transcriptomics, to identify functional genes implied in metal tolerance in plants, largely belonging to the metal homeostasis network. Discussion Analyzing the genetics of metal accumulation in these accumulator plants has been greatly enhanced through the wealth of tools and the resources developed for the study of the model plant Arabidopsis thaliana such as transcript profiling platforms, protein and metabolite profiling, tools depending on RNA interference (RNAi), and collections of insertion line mutants. To understand the genetics of metal accumulation and adaptation, the vast arsenal of resources developed in A. thaliana could be extended to one of its closest relatives that display the highest level of adaptation to high metal environments such as A. halleri and T. caerulescens. Conclusions This review paper deals with the mechanisms of heavy metal accumulation and tolerance in plants. Detailed information has been provided for metal transporters, metal chelation, and oxidative stress in metal-tolerant plants. Advances in phytoremediation technologies and the importance of metal accumulator plants and strategies for exploring these immense and valuable genetic and biological resources for phytoremediation are discussed. Recommendations and perspectives A number of species within the Brassicaceae family have been identified as metal accumulators. To understand fully the genetics of metal accumulation, the vast genetic resources developed in A. thaliana must be extended to other metal accumulator species that display traits absent in this model species. A. thaliana microarray chips could be used to identify differentially expressed genes in metal accumulator plants in Brassicaceae. The integration of resources obtained from model and wild species of the Brassicaceae family will be of utmost importance, bringing most of the diverse fields of plant biology together such as functional genomics, population genetics, phylogenetics, and ecology. Further development of phytoremediation requires an integrated multidisciplinary research effort that combines plant biology, genetic engineering, soil chemistry, soil microbiology, as well as agricultural and environmental engineering.
显示更多 [+] 显示较少 [-]Adsorption of lambda-cyhalothrin and cypermethrin on two typical Chinese soils as affected by copper
2009
Liu, Jun | Lü, Xiaomeng | Xie, Jimin | Chu, Yafei | Sun, Cheng | Wang, Qian
Background, aim, and scope Pesticides and heavy metals pollution in soil environment has become a serious problem in many countries including China. Repeated applications of bordeaux mixture (a blend of copper sulfate and calcium hydroxide) and pyrethroid (Pys) insecticides have led to elevated copper (Cu) and Pys concentrations in vineyard surface soils. However, few studies focused on the interaction of Pys and heavy metals in the soil environment. Our previous studies had indicated the combined effect of cypermethrin (CPM) and Cu on soil catalase activity. Also, we had suggested that the addition of Cu could catalyze photo-degradation of CPM and lambda-cyhalothrin (λ-CHT) in aqueous solution and restrain their degradation in soil. To better understand the potential influence of Cu on the fate of Pys in the soil environment, the aim of the present work was to examine the effect of Cu on the adsorption of λ-CHT and CPM on two typical Chinese soils with different soil characteristics, which was one of the key processes controlling the fate of Pys, and to provide more information about the potential ecological risk of chemicals on the soil ecosystem. Fourier transform infrared and point charges analysis using the MOPAC program of the Gaussian system were also used to reveal the probable adsorption mechanism of λ-CHT and CPM on soils. Materials and methods Two vineyard soils with different properties were chosen as experimental samples. They were sampled from 0 to 10 cm, dried, and sieved to 2 mm. Each soil was spiked with copper sulfate solution to obtain the following total soil Cu concentrations: 100, 200, 400, 800, and 1,600 mg·kg⁻¹. The treated soils were incubated for 2 weeks and then dried at 20°C. For each soil sample and at each soil Cu concentration, the adsorption of λ-CHT and CPM was measured using a batch equilibrium method. The concentration of λ-CHT was determined by HPLC, and the amount of λ-CHT and CPM adsorbed by the soil sample at equilibrium was determined by the difference between the initial and equilibrium concentrations in solution corrected by the blank adsorption measurement. Results Without the addition of Cu, the adsorption of λ-CHT and CPM on Black soil is greater than that on Red soil, while the adsorption of λ-CHT on both soils is significantly stronger than that of CPM. As the soil Cu concentration increased from 19 (or 18; background) to 1,600 mg·kg⁻¹, the adsorption coefficient (K d) of λ-CHT decreased from 12.2 to 5.9 L·kg⁻¹ for Red soil, and from 26.1 to 16.8 L·kg⁻¹ for Black soil, whereas the CPM adsorption coefficient in both soils decreased nearly by 100% (K d decreased from 9.4 to 0.2 L·kg⁻¹ for Red soil and from 16.2 to 0.5 L·kg⁻¹ for Black soil). Discussion Pys adsorption is a surface phenomenon which depends on the surface area and the organic matter content. Thus, the Black soil, having higher organic matter and greater surface area than that of the Red soil, show greater adsorption affinity to λ-CHT and CPM. In our study, the different adsorption affinity of the two Pys was obtained, which was probably attributed to differences with respect to their physical-chemical properties. Further comparison upon the two Pys was conducted. The point charges of halogen atoms in the λ-CHT and CPM were calculated, the differences of which probably lead to the fact that λ-CHT has a stronger binding capacity to soils than CPM. Also, FTIR spectra show that competitive adsorption occurs between CPM and Cu for the same adsorption sites, which is responsible for the obtained suppression of CPM adsorption affected by Cu. Conclusions Lambda-cyhalothrin shows a significantly stronger adsorption than cypermethrin on both soils. This phenomenon may be due to several reasons: (1) λ-CHT has lower solubility and a higher octanol-water partition coefficient value than CPM; (2) λ-CHT consists of specific isomers, whereas CPM is mixtures of eight different isomers; (3) the chlorine and fluorine atoms in the λ-CHT have a negative point charge, whereas the chlorine atoms in the CPM have a positive point charge. As the soil Cu concentrations increased from 19 (or 18) mg·kg⁻¹ to 1,600 mg·kg⁻¹, the adsorption coefficient of λ-CHT and CPM decreased on both soils. This is mainly due to a competition between Cu and Pys for occupying the adsorption sites on soils. The information from this study have important implications for vineyard and orchard soils, which often contain elevated levels of Cu and Pys. These results are also useful in assessing the environmental fate and health effect of λ-CHT and CPM. Recommendations and perspectives It is important for environmental scientists and engineers to get a better understanding of soil-metal-organic contaminant interactions. However, pesticide adsorption involves complex processes, and shortcomings in understanding them still restrict the ability to predict the fate and behavior of pesticide. Therefore, considerable research should be carried out to understand the mechanism of interaction between Pys and heavy metal on soils clearly.
显示更多 [+] 显示较少 [-]