细化搜索
结果 671-680 的 753
Cancer risk assessment after exposure from natural radionuclides in soil using Monte Carlo techniques 全文
2010
Župunski, Ljubica | Spasić-Jokić, Vesna | Trobok, Mirjana | Gordanić, Vojin
Purpose The purpose of this paper is to assess fatal cancer risk after external and internal (inhalation and ingestion) exposure from natural radionuclides in soil like ²³⁸U, ²³²Th, ⁴⁰K, and ²²⁶Ra on the territory of Bela Crkva, Serbia. Although receiving doses are low from sources like natural radionuclides in soil, because of stochastic effects of ionizing radiation, risk for developing cancer exists and can be quantified. Methods Concentrations of radionuclides from 80 soil samples are measured using HPGe detector. Fatal cancer risk is assessed from calculated ambient dose rate in the target organs of body due to external and internal exposure. Monte Carlo simulations are used to obtain conversion factors which are required to calculate absorbed dose rate in target organs. Results and discussion Assessed cancer risk for ²³⁸U in the case of both inhalation and ingestion exposure is from 1.11 × 10⁻⁶ to 24 × 10⁻⁶ for minimal and maximal activity in soil samples, from 1.02 × 10⁻⁶ to 23.3 × 10⁻⁶ for exposure to ²²⁶Ra, from 1.89 × 10⁻⁶ to 50.3 × 10⁻⁶ for exposure to ²³²Th, and from 0.265 × 10⁻⁶ to 9.83 × 10⁻⁶ for exposure to ⁴⁰K. Overall risk from ⁴⁰K as external and internal source is from 0.8 × 10⁻⁶ to 31.9 × 10⁻⁶. Calculated cancer risks from both inhalation and ingestion exposure could be related to all tissues that are on the way of distribution of particles within the body but especially to deposition sites in the body. Conclusion Assessed risks for fatal cancer development from inhaled and ingested natural radionuclides originating in soil are not increased.
显示更多 [+] 显示较少 [-]Zinc tolerance and uptake by Arabidopsis halleri ssp. gemmifera grown in nutrient solution 全文
2010
Kashem, Md Abul | Singh, Bal Ram | Kubota, Hiroshi | Sugawara, Reiko | Kitajima, Nobuyuki | Kondo, Toshihito | Kawai, Shigenao
Background, aim, and scope Zinc is an essential micronutrient element but its concentrations found in contaminated soils frequently exceed those required by the plant and soil organisms, and thus create danger to animal and human health. Phytoremediation is a technique, often employed in remediation of contaminated soils, which aims to remove heavy metals or other contaminants from soils or waters using plants. Arabidopsis (A.) halleri ssp. gemmifera is a plant recently found to be grown vigorously in heavy metal contaminated areas of Japan and it contained remarkably high amount of heavy metals in its shoots. However, the magnitude of Zn accumulation and tolerance in A. halleri ssp. gemmifera need to be investigated for its use as a phytoremediation plant. Materials and methods A. halleri ssp. gemmifera was grown for 3 weeks into half-strength nutrient solution with Zn (as ZnSO₄) levels ranging from 0.2 to 2,000 µM. The harvested plants were separated into shoots and roots, dried in the oven, and ground. The plant tissue was digested with nitric-perchloric acid, and the Zn concentration in the digested solution was measured by atomic absorption spectrophotometer. Results and discussion The results showed no reduction in shoot and root dry weight when plants were grown at 0.2 to 2,000 µM Zn in the solution. The highest Zn concentration measured in the shoots was 26,400 mg kg⁻¹ at 1,000 µM Zn, while in the roots, it was 71,000 mg kg⁻¹ at 2,000 µM Zn treatment. Similar to the Zn concentration in plant parts, maximum Zn accumulation of 62 mg plant⁻¹ in the shoots and 22 mg plant⁻¹ in the roots was obtained at 1,000 and 2,000 µM Zn in the solution. The percentage of Zn translocation in shoot varied from 69% to 90% of the total Zn, indicating that the shoot was the major sink of Zn accumulation in this plant. Conclusions The results of this study indicate that the growth of A. halleri ssp. gemmifera was not affected by the Zn level of up to 2,000 µM in the nutrient solution. The concentration of Zn found in shoot indicated that A. halleri ssp. gemmifera has an extraordinary ability to tolerate and accumulate Zn and hence a good candidate for the phytoremediation of Zn-polluted soil. Recommendations and outlook Based on the results presented in this study and earlier hydroponics, and field study, A. halleri ssp. gemmifera seems to be a potential heavy metals hyperaccumulator, and could be recommended to use for phytoremediation of Cd- and Zn-contaminated soils.
显示更多 [+] 显示较少 [-]Detection of DNA damage in fish Oreochromis mossambicus induced by co-exposure to phenanthrene and nitrite by ESI-MS/MS 全文
2010
Wahidulla, Solimabi | Rajamanickam, Yeziel Rani
Background, aim, and scope Mutagenic nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) have been known to arise in the environment through direct emissions from combustion sources and nitration of PAHs, primarily in the atmosphere. In the marine environment, PAHs are one of the classic anthropogenic organic pollutants, while nitrite (NO ₂ ⁻ ) is produced naturally via various biological processes like imbalance in nitrification/denitrification or eutrophication and subsequent oxygen depletion from an oversupply of nutrients. In this paper, we report the formation of PAH-DNA adducts in fish contaminated with PAHs and exposed to NO ₂ ⁻ in the ambient water. Electrospray ionization tandem mass spectrometric (ESI-MS/MS) analysis of the bile of the euryhaline fish Oreochromis mossambicus exposed simultaneously to field relevant sublethal concentrations of phenanthrene and NO ₂ ⁻ and collision-induced dissociation of selected ions revealed the presence of DNA-PAH adducts. The present study indicates that, although several high sensitivity techniques have been developed for the analysis of PAH derived DNA adducts, MS/MS has emerged as a powerful tool in the detection and structure elucidation of DNA adducts. Materials and methods Juvenile O. mossambicus from a local estuarine fish farm were used with increasing frequency for carcinogenicity testing and comparative cancer research. The fish were exposed to the alkylating agent phenanthrene in the presence of NO ₂ ⁻ . Composite untreated bile samples after dilution with methanol: water (1:1; v/v) were analyzed by ESI-MS. Results Several adducts could be evidenced in the bile by MS/MS. Deoxyadenosine/deoxyguanosine having a mass in the range of 450-650 amu is detected. In addition, a segment of modified dinucleotide with a mass that corresponds to a dimer consisting of a modified guanosine and a normal guanosine has also been identified in the bile. Discussion The formation of certain types of DNA adducts is a crucial step in the induction of cancer and a primary stage in mutagenesis. Phenanthrene injected by i.p. route led to the transformation of phenanthrene to N-formyl amino phenanthrene-N ⁶-deoxyadenosine adduct, whereas the fish co-exposed to phenanthrene and ambient nitrite metabolizes PAH to mono-, di- as well as trinitro derivatives, which then react with DNA leading to the formation of mainly modified guanosine and adenosine adducts. In the present investigation, dinitrophenanthrene diol epoxide (DNPDE) adduct with guanosine (m/z 587) seems to be the dominant adduct in the mixture, and its presence is shown first as a comparatively less stable adduct, which decomposes to give a more stable N² adduct (m/z 567). Conclusions MS/MS has proved to be useful in the rapid determination and discrimination of structurally different phenanthrene/derivatives DNA adducts in a complex mixture of fish bile co-exposed to phenanthrene and nitrite. However, the nature of metabolites formed is likely determined by the route of PAH administration, and there is a need to further define the early biochemical events of carcinogenesis in these species. Recommendations and perspectives DNA adduct analysis in fish bile offers a promising approach to study the risk of potentiation of anthropogenic chemicals into genotoxic compounds in the presence of nitrite in the marine environment. We believe this is the first report on the formation of DNA-phenanthrene adducts on co-exposure of the fish to PAH and nitrite.
显示更多 [+] 显示较少 [-]Effects of shoreline sensitivity on oil spill trajectory modeling of the Lower Mississippi River 全文
2010
Danchuk, Samantha | Willson, Clinton S.
Background, aim, and scope The Lower Mississippi River is a major transportation route for commercial goods and petroleum products produced and refined locally. Oil spills caused by vessel accidents and equipment failure at refineries are a serious threat to the drinking water supply of Southern Louisiana, as well as to the many natural, economic, and social resources supported by the river. Providing accurate trajectory modeling to contingency planners is critical to protecting the local environment. The majority of trajectory model results, assuming a uniform shoreline, show 60-70% of spilled oil can be retained. This study examines the impact of detailed shoreline mapping that captures spatial and temporal changes in shoreline type on oil spill trajectory modeling. Materials and methods Detailed shoreline maps based on recent remote sensing imagery were generated to identify spatial changes in shoreline. A hydrodynamic model of the 78 mile reach from Convent, Louisiana to West Pointe a la Hache was developed to obtain the stage levels and velocity fields of four river discharges. Based on river stage level, another layer was added to the shoreline maps, so that shoreline type was accurately represented at each river discharge, a feature not included in previous mapping. An oil spill trajectory model was then used to investigate the effect of implementing different re-floatation half-lives that correlate to the shoreline maps developed for this study at four river discharges. Results Detailed shoreline mapping showed the Lower Mississippi River has four major shoreline types each with different oil re-floatation half-lives: muddy clay, sand, low vegetation, and high vegetation. As flow rate changed, the shoreline spatial variability also changed, from 84% mud/sand and 16% vegetation at low flow rates to 4% mud and 96% vegetation at higher flow rates. At flow rates with large variability in shoreline type, the distribution of oil attached to the shore was significantly different from results of simulations that used a constant shoreline type and re-floatation half-life. Discussion At low flow rates, simulations with the detailed delineation of shoreline type predicted that ~30% of the oil would be beached/retained because the oil was able to travel further down the reach and interact with the shoreline in multiple locations. Simulations at the low flow rates with the existing shoreline mapping predicted approximately 65% of the oil would be retained as did all the simulations at the highest flow rates. At high flow rates, the oil interacted mostly with vegetation and results were very similar to those obtained with a single re-floatation half-life of 1 year. In addition to shoreline type, river geometry and the hydrodynamics were major factors influencing the distribution of oil along the river reach. Conclusions Shoreline re-floatation half-lives have a major impact on simulating the distribution of oil along the shore after a spill, especially in areas with a high variability of shoreline type as in the lower Mississippi River. Assigning the correct re-floatation half-life and retention capacity is only possible when shoreline types have been correctly identified. The maps developed for this study provided an important level of detail and incorporated the change in shoreline type with flow rate, resulting in more detailed trajectory modeling of the study reach. Recommendations and perspectives Shoreline maps should include as much detail about shoreline type as possible. When developing shoreline maps or environmental sensitivity assessments, the focus should include specific characteristics of the study area; using standardized maps or methods of assessment may leave out detail that could negatively impact modeling efforts. Finally, shoreline sensitivity to oiling is an important area of research that will benefit from an improved understanding of oil retention by vegetation.
显示更多 [+] 显示较少 [-]Reproductive functions of wild fish as bioindicators of reproductive toxicants in the aquatic environment 全文
2010
Allner, Bernhard | von der Gönna, Sabine | Griebeler, Eva-Maria | Nikutowski, Nadja | Weltin, Annette | Stahlschmidt-Allner, Petra
Background, aim, and scope Impacts on the reproductive health of wild fish are thought to be suitable early-warning tools indicating contamination of surface waters with endocrine-disrupting compounds. Ecotoxicological assessment of these field observations depends on the availability of reliable biomarkers to enable a discrimination of natural variations of reproductive functions from anthropogenic impacts. Materials and methods Roach and perch were caught at eight sampling sites by electrofishing twice a year in summer (July-September) and late autumn/winter (November-December) over a 2-year period. The sites are characterized by different degrees of anthropogenic impact and are situated within the greater Upper Rhine catchment. Age growths, parasitization and gonadal histology of more than 3,000 fish were examined. Results The two dominant fish species in German surface waters perch (Perca fluviatilis L.) and roach (Rutilus rutilus L.) differ considerably regarding their suitability for biomonitoring. Even in pristine habitats, perch show several variants of sex differentiation in terms of (1) the time of first sexual maturation, (2) the course of seasonal gonadal recrudescence, and (3) the occurrence of heterologous germ cells (testes ova). A statistically significant elevated proportion of males were observed in fish obtained from a TBT-contaminated marina and suppression of gonadal ripening was observed in females caught in a sewage-contaminated brook. Both effects appear to be due to chemical contamination. The only “natural” alteration of sex differentiation in roach was related to parasitization with Ligula intestinalis (Eucestoda, Pseudophyllidea). Other deviations from the normal pattern of sex differentiation were (1) suppression of ovarian ripening and (2) asynchronic seasonal gonadal recrudescence. These are strong indicators of an anthropogenically induced impact on reproductive health. Feminization phenomena were not observed at either the individual or the population level. Discussion Interpretation of field monitoring results concerning reproductive health requires large numbers of samples and detailed knowledge of the natural plasticity of sex differentiation in the species under investigation. A better understanding of the mechanisms underlying the plasticity of sex differentiation in perch is indispensable to enable perch to be used as a bioindicator. Conclusions Deviation from the strict and probably endogenous control of sex differentiation in roach is a strong and unequivocal warning signal. Recommendations and perspectives The subject of fish monitoring should be addressed in the context of a broader spectrum of potential risks. Seasonal and ontogenetic integrity of gonadal development and recrudescence are potent biomarkers, provided the natural process is well documented for the species under investigation.
显示更多 [+] 显示较少 [-]Recent trends of the emission characteristics from the road construction industry 全文
2010
Chauhan, Sippy K | Sharma, Sangita | Shukla, Anuradha | Gangopadhyay, S
Bitumen is a black, thermoplastic, hydrocarbon material derived from the processing of crude oil. At ambient temperature, bitumen is solid and does not present any health/environmental risks. This is one of the main reasons that bitumen is widely used for road construction all over the world. But during manufacturing/modification according to its application, storage, transportation, and use of bitumen is heated giving off various hydrocarbons emissions. In recent years, there has been increasing interest in investigating the potential of bitumen emissions to cause health effects. This is mainly because of the reason that bitumen has small amount of poly-aromatic hydrocarbons, along with some other volatiles like benzene, toluene, etc., which are known to be carcinogenic in nature. Thus, assessment of the emission characteristics and health hazards of bitumen fumes may have far reaching industrial economic and public health implications. In this review, we will discuss about the emission characteristics from bitumen, asphalts, or road construction, which is mainly contributed by bitumen fumes. Sampling strategies and analytical methods employed are also described briefly.
显示更多 [+] 显示较少 [-]Removal of 4-chlorobenzoic acid from spiked hydroponic solution by willow trees (Salix viminalis) 全文
2010
Deavers, Kamila | Macek, Thomas | Karlson, Ulrich G | Trapp, Stefan
Background Chlorobenzoic acids (CBA) are intermediate products of the aerobic microbial degradation of PCB and several pesticides. This study explores the feasibility of using basket willows, Salix viminalis, to remove 4-CBA from polluted sites, which also might stimulate PCB degradation. Methods The removal of 4-CBA by willow trees was investigated with intact, septic willow trees growing in hydroponic solution and with sterile cell suspensions at concentrations of 5 mg/L and 50 mg/L 4-CBA. Nutrient solutions with different levels of ammonium and nitrate were prepared to achieve different pH levels. The concentration of 4-CBA was tracked over time and quantified by HPLC. Results and discussion At the low level of 4-CBA (5 mg/L), willows removed 70% (pH 4.2) to 90% (pH 6.8), while 48% (pH 4.2) to 52% (pH 6.8) of the water was transpired. At the high 4-CBA level (50 mg/L), the pH varied between 4.4 and 4.6, and 10% to 30% of 4-CBA was removed, but only 5% to 9% of the water. In sterile cell suspensions, removal of 4-CBA by fresh biomass was much higher than removal by dead biomass. Conclusions The results indicate that 4-CBA is toxic to willow trees at 50 mg/L. The removal of 4-CBA from solution is by both passive processes (uptake with water, sorption to plant tissue) and metabolic processes of the plants. Recommendations and outlook Plants, such as willow trees, might assist in the degradation of PCB and their degradation products CBA.
显示更多 [+] 显示较少 [-]Removal of estrone, 17α-ethinylestradiol, and 17ß-estradiol in algae and duckweed-based wastewater treatment systems 全文
2010
Shi, Wenxin | Wang, Lizheng | Rousseau, Diederik P. L. | Lens, P. N. L. (Piet N. L)
Background, aim, and scope Many pollutants have received significant attention due to their potential estrogenic effect and are classified as endocrine disrupting compounds (EDCs). Because of possible ecological effects and increased attention for water reuse schemes, it is important to increase our understanding of the EDC removal capacities of various wastewater treatment systems. However, there has so far been little research on the fate and behavior of EDCs in stabilization pond systems for wastewater treatment, which represent an important class of wastewater treatment systems in developing countries because of their cost-effectiveness. The aim of this work is to study the fate and behavior of EDCs in algae and duckweed ponds. Because the synthetic hormone 17α-ethinylestradiol (EE2) and the natural hormones estrone (E1), as well as 17β-estradiol (E2), have been detected in effluents of sewage treatment plants and been suggested as the major compounds responsible for endocrine disruption in domestic sewage; E1, E2, and EE2 were therefore chosen as target chemicals in this current work. Materials and methods Both batch tests and continuous-flow tests were carried out to investigate the sorption and biodegradation of estrogens in algae and duckweed pond systems. The applied duckweed was a Lemna species. The applied algae was a mixture of pure cultures of six different algae genera, i.e., Anabaena cylindrica, Chlorococcus, Spirulina platensis, Chlorella, Scenedesmus quadricauda, and Anaebena var. Synthetic wastewater were used in all tests. The concentrations of estrogens were measured with three different enzyme-linked immunosorbent assay kits specific for E1, E2, or EE2. When the concentrations of estrogens in water samples were below the lowest quantitative analysis range (0.05 µg/l), preconcentration of the water samples were performed by means of solid phase extraction (SPE) with C18 cartridges. Results The 6-day batch tests show that the presence of algae or duckweed accelerated the removal of the three estrogens from the synthetic wastewater. More estrogens were removed in the tests with duckweed than in tests with algae or with wastewater. In the sorption tests, a swift sorption of the three estrogens was observed when the estrogens were contacted with duckweed or algae, while the estrogen concentrations in tap water kept unchanged during the 3-h sorption tests. The mass balances indicated that only about 5% of the estrogens were bound to the algae sediment or duckweed at the end of the 6-day tests. Results of the continuous-flow tests revealed that the algae and duckweed ponds effectively removed E1, E2, and EE2 even at nanograms per liter level. Interconversion of E1 and E2 occurred both in batch and continuous-flow tests. E2 could be readily transformed to E1, especially in the tests with algae. Discussion Different processes like sorption, biodegradation and photolytic degradation might play an important role in the removal of estrogens from the aquatic phase. The 3-h sorption tests support the importance of sorption for estrogen removal, in which a rapid initial sorption was observed over the first 2 min for E1/E2/EE2 to both duckweed and algae. In the 6-day batch tests, estrogens were sorbed by algae or duckweed during the early stage when algae and duckweed were contacted with the synthetic wastewater and the sorbed estrogens were further biodegraded by the microorganisms developed in the wastewater. The persistent estrogen concentrations in tap water, however, implied that no sorption, biodegradation, or photolytic degradation occurred in tap water under the specific experimental conditions. Under aerobic or anoxic conditions, E2 could be first oxidized to E1, which is further oxidized to unknown metabolites and finally to CO₂ and water. Under anaerobic conditions, E1 can also be reduced to E2. However, the interconversion might be much more complex especially in the tests with algae because both aerobic and anaerobic conditions occurred in these tests due to the variation of the dissolved oxygen concentration induced by the light regime. Conclusions This study shows that estrogens, E1, E2, and EE2, can be effectively removed from the continuous-flow algae and duckweed ponds even when their concentrations are at nanograms per liter level. The presence of algae and duckweed accelerate the removal of estrogens from the synthetic wastewater because estrogens can be quickly sorbed on duckweed or algae. The sorbed estrogens are subsequently degraded by microorganisms, algae, or duckweed in the wastewater treatment system. E1 and E2 are interconvertible in both duckweed and algae pond systems. E2 can be readily transformed to E1, especially in the tests with algae. Recommendation and perspectives Based on the tests performed so far, one can conclude that both sorption and biodegradation are important to the estrogens removal from stabilization pond systems for wastewater treatment. Further research using, e.g., radioimmunoassay is needed to investigate the biodegradation pathway of estrogens in algae and duckweed ponds.
显示更多 [+] 显示较少 [-]A novel method using sedimentary metals and GIS for measuring anthropogenic change in coastal lake environments 全文
2010
Olmos, Marco Antonio | Birch, Gavin F.
Background, aim and scope A new method using sedimentary metals and geographic information system as indicators for assessing temporal and spatial anthropogenic change in estuaries has been applied to a large coastal lake (Lake Macquarie) in New South Wales, Australia. Materials, methods and results Two vintages of data (1975 and 2003) on surficial sediment metal (Cd, Cu, Pb and Zn) concentrations combined with ²¹⁰Pb core profiles were used to determine past changes in sediment quality and to predict possible future relaxation rates for the entire lake area in response to change in anthropogenic pressure. Sediment cores showed distinct vertical profiles; sedimentation rates in the northern part of the lake were consistent (14 mm year⁻¹) over the 55-year period investigated. Discussion and conclusions Surficial metal concentrations were highest in the 1975 sediment than in the 2003 samples, with the northern part of Lake Macquarie having much greater metal concentrations than the rest of the lake. Past and future declining sedimentary metal concentrations in the northern part of the lake were expected due to the closure of a nearby Pb-Zn smelter; however, possible increases in Cu in the south of the lake to the year 2020 were surprising. The new method presented in this study can assist estuary managers by providing data on past, present and future conditions, which are essential in making informed decisions for the improvement of estuarine systems.
显示更多 [+] 显示较少 [-]Microbial dynamics in a sequencing batch reactor treating alkaline peroxide mechanical pulp and paper process wastewater 全文
2010
Zhan, Peng | Chen, Jienan | He, Gang | Fang, Guigan | Shi, Yingqiao
Background, aim, and scope For many years, highly concentrated wastewater generated from the pulp and paper industry has become the focus of much concern worldwide. The objectives of this study were to determine the treatment efficiency of the alkaline peroxide mechanical pulp (APMP) process wastewater using a sequencing batch reactor (SBR) and analyze the microbial dynamics of the wastewater treatment system using the random amplified polymorphic DNA (RAPD) method. Materials and methods An SBR was applied to the treatment of APMP pulp and paper process wastewater. The wastewater characteristics and many physicochemical operator indicators in the wastewater treatment process were analyzed and determined according to standard methods. Microbial 16 S rDNA in active sludge was extracted, amplified, and analyzed using the RAPD method for the microbial dynamics of the wastewater treatment system. Results and discussion Ten kinds of natural organic compounds of plants such as monoterpene were detected in the APMP pulp and paper process wastewater. With an influent chemical oxygen demand (COD) that varied in the range of 685.7 to 907.5 mg/L, the corresponding effluent COD was 176.5 to 266.1 mg/L and the removal efficiency was 70.3% to 79.8%. An optimal strain (S308: CAGGGGTGGA) was selected to study the population dynamics and diversity of the bacterial community. The RAPD-polymerase chain reaction (PCR) fingerprints showed very high polymorphism of the genetic bands (78-100%). Four groups of species were clustered using the unweighted pair group method with arithmetic (UPGMA) analysis, and the genetic distance was close between the species within each group. The Shannon-Weaver index was high and varied over time with the COD removal. Conclusions The RAPD-PCR technique can be used to study microbial dynamics, which was shown to vary over time with the removal efficiency of SBR treating APMP pulp and paper process wastewater.
显示更多 [+] 显示较少 [-]