细化搜索
结果 671-680 的 4,287
Season, molt, and body size influence mercury concentrations in grebes
2017
Hartman, C Alex | Ackerman, Joshua T. | Herzog, Mark P. | Eagles-Smith, Collin A.
We studied seasonal and physiological influences on mercury concentrations in western grebes (Aechmophorus occidentalis) and Clark's grebes (A. occidentalis) across 29 lakes and reservoirs in California, USA. Additionally, at three of these lakes, we conducted a time series study, in which we repeatedly sampled grebe blood mercury concentrations during the spring, summer, and early fall. Grebe blood mercury concentrations were higher among males (0.61 ± 0.12 μg/g ww) than females (0.52 ± 0.10 μg/g ww), higher among Clark's grebes (0.58 ± 0.12 μg/g ww) than western grebes (0.51 ± 0.10 μg/g ww), and exhibited a strong seasonal pattern (decreasing by 60% from spring to fall). Grebe blood THg concentrations exhibited a shallow, inverse U-shaped pattern with body size, and was lowest among the smallest and largest grebes. Further, the relationship between grebe blood mercury concentrations and wing primary feather molt exhibited a shallow U-shaped pattern, where mercury concentrations were highest among birds that had not yet begun molting, decreased approximately 24% between pre-molt and late molt, and increased approximately 19% from late molt to post-molt. Because grebes did not begin molting until mid-summer, lower grebe blood mercury concentrations observed in late summer and early fall were consistent with the onset of primary feather molt. However, because sampling date was a much stronger predictor of grebe mercury concentrations than molt, other seasonally changing environmental factors likely played a larger role than molt in the seasonal variation in grebe mercury concentrations. In the time series study, we found that seasonal trends in grebe mercury concentrations were not consistent among lakes, indicating that lake-specific variation in mercury dynamics influence the overall seasonal decline in grebe blood mercury concentrations. These results highlight the importance of accounting for sampling date, as well as ecological processes that may influence mercury concentrations, when developing monitoring programs to assess site-specific exposure risk of mercury to wildlife.
显示更多 [+] 显示较少 [-]Embryonic exposures to perfluorooctanesulfonic acid (PFOS) disrupt pancreatic organogenesis in the zebrafish, Danio rerio
2017
Sant, Karilyn E. | Jacobs, Haydee M. | Borofski, Katrina A. | Moss, Jennifer B. | Timme-Laragy, Alicia R.
Perfluorooctanesulfonic acid (PFOS) is a ubiquitous environmental contaminant, previously utilized as a non-stick application for consumer products and firefighting foam. It can cross the placenta, and has been repeatedly associated with increased risk for diabetes in epidemiological studies. Here, we sought to establish the hazard posed by embryonic PFOS exposures on the developing pancreas in a model vertebrate embryo, and develop criteria for an adverse outcome pathway (AOP) framework to study the developmental origins of metabolic dysfunction. Zebrafish (Danio rerio) embryos were exposed to 16, 32, or 64 μM PFOS beginning at the mid-blastula transition. We assessed embryo health, size, and islet morphology in Tg(insulin-GFP) embryos at 48, 96 and 168 hpf, and pancreas length in Tg(ptf1a-GFP) embryos at 96 and 168 hpf. QPCR was used to measure gene expression of endocrine and exocrine hormones, digestive peptides, and transcription factors to determine whether these could be used as a predictive measure in an AOP. Embryos exposed to PFOS showed anomalous islet morphology and decreased islet size and pancreas length in a U-shaped dose-response curve, which resemble congenital defects associated with increased risk for diabetes in humans. Expression of genes encoding islet hormones and exocrine digestive peptides followed a similar pattern, as did total larval growth. Our results demonstrate that embryonic PFOS exposures can disrupt pancreatic organogenesis in ways that mimic human congenital defects known to predispose individuals to diabetes; however, future study of the association between these defects and metabolic dysfunction are needed to establish an improved AOP framework.
显示更多 [+] 显示较少 [-]When soils become sediments: Large-scale storage of soils in sandpits and lakes and the impact of reduction kinetics on heavy metals and arsenic release to groundwater
2017
Vink, Jos P.M. | van Zomeren, Andre | Dijkstra, Joris J. | Comans, Rob N.J.
Simulating the storage of aerobic soils under water, the chemical speciation of heavy metals and arsenic was studied over a long-term reduction period. Time-dynamic and redox-discrete measurements in reactors were used to study geochemical changes. Large kinetic differences in the net-complexation quantities of heavy metals with sulfides was observed, and elevated pore water concentrations remained for a prolonged period (>1 year) specifically for As, B, Ba, Co, Mo, and Ni. Arsenic is associated to the iron phases as a co-precipitate or sorbed fraction to Fe-(hydr)oxides, and it is being released into solution as a consequence of the reduction of iron. The composition of dissolved organic matter (DOM) in reducing pore water was monitored, and relative contributions of fulvic, humic and hydrophylic compounds were measured via analytical batch procedures. Quantitative and qualitative shifts in organic compounds occur during reduction; DOM increased up to a factor 10, while fulvic acids become dominant over humic acids which disappear altogether as reduction progresses. Both the hydrophobic and hydrophilic fractions increase and may even become the dominant fraction.Reactive amorphous and crystalline iron phases, as well as dissolved FeII/FeIII speciation, were measured and used as input for the geochemical model to improve predictions for risk assessment to suboxic and anaerobic environments. The release of arsenic is related to readily reducible iron fractions that may be identified by 1 mM CaCl2 extraction procedure. Including DOM concentration shifts and compositional changes during reduction significantly improved model simulations, enabling the prediction of peak concentrations and identification of soils with increased emission risk. Practical methods are suggested to facilitate the practice of environmentally acceptable soil storage under water.
显示更多 [+] 显示较少 [-]Trophic ecology drives contaminant concentrations within a tropical seabird community
2017
Sebastiano, Manrico | Bustamante, Paco | Eulaers, Igor | Malarvannan, Govindan | Mendez-Fernandez, Paula | Churlaud, Carine | Blévin, Pierre | Hauselmann, Antoine | Covaci, Adrian | Eens, Marcel | Costantini, David | Chastel, Olivier
To support environmental management programs, there is an urgent need to know about the presence and understand the dynamics of major contaminants in seabird communities of key marine ecosystems. In this study, we investigated the concentrations and trophodynamics of trace elements in six seabird species and persistent organic pollutants (POPs) in three seabird species breeding on Grand Connétable Island (French Guiana), an area where the increase in human population and mining activities has raised concerns in recent years. Red blood cell Hg concentrations in adults were the highest in Magnificent frigatebirds Fregata magnificens (median: 5.6 μg g−1 dw; range: 3.8–7.8 μg g−1 dw) and lowest in Sooty terns Onychoprion fuscatus (median: 0.9 μg g−1 dw; range: 0.6–1.1 μg g−1 dw). Among POPs, dichlorodiphenyldichloroethylene (p,p’-DDE) was the most abundant compound in plasma of Cayenne terns Thalasseus sandvicensis (median: 1100 pg g−1 ww; range: 160 ± 5100 pg g−1 ww), while polychlorinated biphenyls (PCBs) were the most abundant compound class in plasma of Magnificent frigatebirds (median: 640 pg g−1 ww; range 330 ± 2700 pg g−1 ww). While low intensity of POP exposure does not appear to pose a health threat to this seabird community, Hg concentration in several adults Laughing gulls Leucophaeus atricilla and Royal terns Thalasseus maximus, and in all Magnificent frigatebirds was similar or higher than that of high contaminated seabird populations. Furthermore, nestling red blood cells also contained Hg concentrations of concern, and further studies should investigate its potential health impact in this seabird community. Differences in adult trophic ecology of the six species explained interspecific variation in exposure to trace element and POPs, while nestling trophic ecology provides indications about the diverse feeding strategies adopted by the six species, with the consequent variation in exposure to contaminants.
显示更多 [+] 显示较少 [-]Significant seasonal variations of microbial community in an acid mine drainage lake in Anhui Province, China
2017
Hao, Chunbo | Wei, Pengfei | Pei, Lixin | Du, Zerui | Zhang, Yi | Lu, Yanchun | Dong, Hailiang
Acid mine drainage (AMD),characterized by strong acidity and high metal concentrations, generates from the oxidative dissolution of metal sulfides, and acidophiles can accelerate the process significantly. Despite extensive research in microbial diversity and community composition, little is known about seasonal variations of microbial community structure (especially micro eukaryotes) in response to environmental conditions in AMD ecosystem. To this end, AMD samples were collected from Nanshan AMD lake, Anhui Province, China, over a full seasonal cycle from 2013 to 2014, and water chemistry and microbial composition were studied. pH of lake water was stable (∼3.0) across the sampling period, while the concentrations of ions varied dramatically. The highest metal concentrations in the lake were found for Mg and Al, not commonly found Fe. Unexpectedly, ultrahigh concentration of chlorophyll a was measured in the extremely acidic lake, reaching 226.43–280.95 μg/L in winter, even higher than those in most eutrophic freshwater lakes. Both prokaryotic and eukaryotic communities showed a strong seasonal variation. Among the prokaryotes, “Ferrovum”, a chemolithotrophic iron-oxidizing bacterium was predominant in most sampling seasons, although it was a minor member prior to September, 2012. Fe2+ was the initial geochemical factor that drove the variation of the prokaryotic community. The eukaryotic community was simple but varied more drastically than the prokaryotic community. Photoautotrophic algae (primary producers) formed a food web with protozoa or flagellate (top consumers) across all four seasons, and temperature appeared to be responsible for the observed seasonal variation. Ochromonas and Chlamydomonas (responsible for high algal bloom in winter) occurred in autumn/summer and winter/spring seasons, respectively, because of their distinct growth temperatures. The closest phylogenetic relationship between Chlamydomonas species in the lake and those in Arctic and Alpine suggested that the native Chlamydomonas species may have been both acidophilic and psychrophilic after a long acclimation time in this extreme environment.
显示更多 [+] 显示较少 [-]Photobleaching alters the photochemical and biological reactivity of humic acid towards 17α-ethynylestradiol
2017
Ren, Dong | Huang, Bin | Yang, Benqin | Chen, Fang | Pan, Xuejun | Dionysiou, Dionysios D.
Dissolved humic acid (HA) is ubiquitous in natural waters. Its presence significantly changes the photo-and bio-degradation of some organic pollutants in natural waters. The effects of photobleaching on the composition, photosensitizing property and bioavailability of HA were investigated here along with the subsequent influence on its photochemical and biological reactivity in mediating 17α-ethynylestradiol (EE2) degradation. Photobleaching transformed the refractory HA into some small molecules, including organic acids and aliphatics. Along with composition alteration, the photochemical reactivity of HA towards EE2 was slightly depressed, with 9% of the removal rate inhibited by a 70-h photobleaching. Contrarily, the reactivity of HA in mediating EE2 biodegradation by E. coli was significantly promoted by a short-term photobleaching. Compared to the biodegradation of EE2 in the pristine HA, the 10-h photobleached HA increased the biodegradation removal rate of EE2 by 25%, reaching its peak value of about 60%. However, the EE2 biodegradation was inhibited by further irradiation, and the removal rate of EE2 decreased to that in the pristine HA systems. Because no substrate competition was found between EE2 and formate or glucose, EE2 biodegradation mediated by HA in natural waters may not be affected by coexistent organics. Photodegradation and biodegradation of EE2 mediated by HA thus can be combined together by photobleaching to remove pollutants from natural waters. The results reported here could assist environmental risk assessment with respect to EE2 in natural aquatic systems.
显示更多 [+] 显示较少 [-]Effects of a common insecticide on wetland communities with varying quality of leaf litter inputs
2017
Stoler, A.B. | Mattes, B.M. | Hintz, W.D. | Jones, D.K. | Lind, L. | Schuler, M.S. | Relyea, R.A.
Chemical contamination of aquatic systems often co-occurs with dramatic changes in surrounding terrestrial vegetation. Plant leaf litter serves as a crucial resource input to many freshwater systems, and changes in litter species composition can alter the attributes of freshwater communities. However, little is known how variation in litter inputs interacts with chemical contaminants. We investigated the ecological effects resulting from changes in tree leaf litter inputs to freshwater communities, and how those changes might interact with the timing of insecticide contamination. Using the common insecticide malathion, we hypothesized that inputs of nutrient-rich and labile leaf litter (e.g., elm [Ulmus spp.] or maple [Acer spp.]) would reduce the negative effects of insecticides on wetland communities relative to inputs of recalcitrant litter (e.g., oak [Quercus spp.]). We exposed artificial wetland communities to a factorial combination of three litter species treatments (elm, maple, and oak) and four insecticide treatments (no insecticide, small weekly doses of 10 μg L−1, and either early or late large doses of 50 μg L−1). Communities consisted of microbes, algae, snails, amphipods, zooplankton, and two species of tadpoles. After two months, we found that maple and elm litter generally induced greater primary and secondary production. Insecticides induced a reduction in the abundance of amphipods and some zooplankton species, and increased phytoplankton. In addition, we found interactive effects of litter species and insecticide treatments on amphibian responses, although specific effects depended on application regime. Specifically, with the addition of insecticide, elm and maple litter induced a reduction in gray tree frog survival, oak and elm litter delayed tree frog metamorphosis, and oak and maple litter reduced green frog tadpole mass. Our results suggest that attention to local forest composition, as well as the timing of pesticide application might help ameliorate the harmful effects of pesticides observed in freshwater systems.
显示更多 [+] 显示较少 [-]Short-term effects of ambient air pollution on emergency room admissions due to cardiovascular causes in Beijing, China
2017
Ma, Yuxia | Zhao, Yuxin | Yang, Sixu | Zhou, Jianding | Xin, Jinyuan | Wang, Shigong | Yang, Dandan
Ambient air pollution has been a major global public health issue. A number of studies have shown various adverse effects of ambient air pollution on cardiovascular diseases. In the current study, we investigated the short-term effects of ambient air pollution on emergency room (ER) admissions due to cardiovascular causes in Beijing from 2009 to 2012 using a time-series analysis. A total of 82430 ER cardiovascular admissions were recorded. Different gender (male and female) and age groups (15yrs ≤ age <65 yrs and age ≥ 65 yrs) were also examined by single model and multiple-pollutant model. Three major pollutants (SO2, NO2 and PM10) had lag effects of 0–2 days on cardiovascular ER admissions. The relative risks (95% CI) of per 10 μg/m3 increase in PM10, SO2 and NO2 were 1.008 (0.997–1.020), 1.008(0.999–1.018) and 1.014(1.003–1.024), respectively. The effect was more pronounced in age ≥65 and males in Beijing. We also found the stronger acute effects on the elderly and females at lag 0 than on the younger people and males at lag 2.
显示更多 [+] 显示较少 [-]Microplastics pollution after the removal of the Costa Concordia wreck: First evidences from a biomonitoring case study
2017
Avio, Carlo Giacomo | Cardelli, Lara Roberta | Gorbi, Stefania | Pellegrini, David | Regoli, Francesco
Microplastics (MPs) represent a matter of growing concern for the marine environment. Their ingestion has been documented in several species worldwide, but the impact of specific anthropogenic activities remains largely unexplored. In this study, MPs were characterized in different benthic fish sampled after 2.5 years of huge engineering operations for the parbuckling project on the Costa Concordia wreck at Giglio Island. Fish collected in proximity of the wreck showed a high ingestion of microplastics compared to both fish from a control area and values reported worldwide. Also the elevated percentage of nylon, polypropylene lines and the presence of polystyrene are quite unusual for marine organisms sampled in natural field conditions, thus supporting the possible relationship of ingested microplastics with maritime operations during wreck removal. On the other hand, the use of transplanted mussels revealed a lower frequency of ingested MPs, and did not discriminate differences between the wreck and the control area. Some variations were observed in terms of typology and size of particles between surface- and bottom-caged mussels highlighting the influence of a different distribution of MPs along the water column. In conclusion, this study demonstrated that MPs pollution in the area of Costa Concordia was more evident on benthonic environment than on seawater column, providing novel insights on the possibility of using appropriate sentinel organisms for monitoring specific anthropogenic sources of MPs pollution in the marine environment.
显示更多 [+] 显示较少 [-]Agglomeration potential of TiO2 in synthetic leachates made from the fly ash of different incinerated wastes
2017
He, Xu | Mitrano, Denise M. | Nowack, Bernd | Bahk, Yeon Kyoung | Figi, Renato | Schreiner, Claudia | Bürki, Melanie | Wang, Jing
Material flow studies have shown that a large fraction of the engineered nanoparticles used in products end up in municipal waste. In many countries, this municipal waste is incinerated before landfilling. However, the behavior of engineered nanoparticles (ENPs) in the leachates of incinerated wastes has not been investigated so far. In this study, TiO2 ENPs were spiked into synthetic landfill leachates made from different types of fly ash from three waste incineration plants. The synthetic leachates were prepared by standard protocols and two types of modified procedures with much higher dilution ratios that resulted in reduced ionic strength. The pH of the synthetic leachates was adjusted in a wide range (i.e. pH 3 to 11) to understand the effects of pH on agglomeration. The experimental results indicated that agglomeration of TiO2 in the synthetic landfill leachate simultaneously depend on ionic strength, ionic composition and pH. However, when the ionic strength was high, the effects of the other two factors were masked. The zeta potential of the particles was directly related to the size of the TiO2 agglomerates formed. The samples with an absolute zeta potential value < 10 mV were less stable, with the size of TiO2 agglomerates in excess of 1500 nm. It can be deduced from this study that TiO2 ENPs deposited in the landfill may be favored to form agglomerates and ultimately settle from the water percolating through the landfill and thus remain in the landfill.
显示更多 [+] 显示较少 [-]