细化搜索
结果 681-690 的 4,937
Recent advances in toxicological research of nanoplastics in the environment: A review 全文
2019
Nanoplastics have attracted increasing attention in recent years due to their widespread existence in the environment and the potential adverse effects on living organisms. In this paper, the toxic effects of nanoplastics on organisms were systematically reviewed. The translocation and absorption of nanoplastics, as well as the release of additives and contaminants adsorbed on nanoplastics in the organism body were discussed, and the potential adverse effects of nanoplastics on human health were evaluated. Nanoplastics can be ingested by organisms, be accumulated in their body and be transferred along the food chains. Nanoplastics showed effects on the growth, development and reproduction of organisms, and disturbing the normal metabolism. The toxic effects on living organisms mainly depended on the surface chemical properties and the particle size of nanoplastics. Positively charged nanoplastics showed more significant effects on the normal physiological activity of cells than negatively charged nanoplastics, and smaller particle sized nanoplastics could more easily penetrate the cell membranes, hence, accumulated in tissues and cells. Additionally, the release of additives and contaminants adsorbed on nanoplastics in organism body poses more significant threats to organisms than nanoplastics themselves. However, there are still knowledge gaps in the determination and quantification of nanoplastics, as well as their contaminant release mechanisms, degradation rates and process from large plastics to nanoplastics, and the transportation of nanoplastics along food chains. These challenges would hinder the risk assessment of nanoplastics in the environment. It is necessary to further develop the risk assessment of nanoplastics and deeply investigate its toxicological effects.
显示更多 [+] 显示较少 [-]Dithiothreitol (DTT) concentration effect and its implications on the applicability of DTT assay to evaluate the oxidative potential of atmospheric aerosol samples 全文
2019
The cell-free dithiothreitol (DTT) assay is widely used and the DTT consumption rate is interpreted to assess the oxidative potential (OP). Most researchers use an experimental procedure developed by Cho et al. (2005) while some adopt a procedure by Li et al. (2009). The key difference between the two procedures is the initial DTT concentration, 100 μM used in the former and 20 μM in the latter, raising an unaddressed issue of comparability. We examine in this work this issue using metal-free humic-like substance (HULIS) samples isolated from ambient aerosol and two metals (i.e. copper and manganese). We found that higher initial DTT concentrations led to higher DTT consumption rates for both HULIS and metals. For HULIS, the increase in DTT consumption rate was proportional to the initial DTT concentration (i.e., roughly by 5-fold), allowing correction of the concentration effect and direct comparison of results from the two protocols. However, the proportionality did not hold for the metals or metal-organic mixtures. The increase was much lower than the proportionality of 5 and metal concentration-dependent, specifically, 1.2–1.3 for Cu and from negligible to 2.0 for Mn. For six water extracts of ambient aerosol samples, in which HULIS and metals co-exist, the proportionality ranged from 1.3 to 2.2. This deviation from a linear dependence on initial DTT concentration, plausibly due to metal-DTT binding, impedes assessing and comparing OP of metals and metal-organic mixtures using different implementations of the DTT assay. Considering the different antioxidants concentrations in real human lung fluid, this work raises caution about using the DTT assay to assess metal-containing mixtures, such as ambient aerosol samples.
显示更多 [+] 显示较少 [-]Characteristics, sources and health risk assessment of airborne particulate PAHs in Chinese cities: A review 全文
2019
Yan, Daohao | Wu, Shaohua | Zhou, Shenglu | Tong, Guijie | Li, Fufu | Wang, Yuanmin | Li, Baojie
Polycyclic aromatic hydrocarbons (PAHs) are organic compounds composed of at least two benzene rings. This paper reviews the characteristics, sources and health risk of airborne particulate PAHs in Chinese cities. The airborne particulate PAH concentrations varied from 3.35 to 910 ng m⁻³, with an average of 75.0 ng m⁻³, and the pollution level of PAHs in northern cities was generally higher than that in southern cities. The PAH concentrations in different cities underwent similar seasonal variations, with high concentrations in the winter and relatively low concentrations in the summer. Many factors, such as meteorological conditions and source emissions, influenced the spatiotemporal pattern of PAHs. High temperatures, frequent flow exchanges, abundant rainfall and strong solar radiation reduced the level of particulate PAHs in the atmosphere. The historical changes in the level of airborne particulate PAHs in four cities were analyzed. The PAH concentrations in Beijing and Taiyuan presented a trend of first increasing and then decreasing, while the level of particulate PAHs in Nanjing and Guangzhou had a decreasing tendency from year 2000–2015. The airborne particulate PAHs in cities were derived from several sources, including coal combustion, vehicle emissions, coking industries, biomass burning and petroleum volatilization. The results of a health risk assessment indicated that the incremental lifetime cancer risk (ILCR) for people in the northern cities was higher than that for people in the other regions, especially during the cold season. Moreover, adults were at greater risk than people in other age groups, and the health risk to females was slightly higher than that to males. The potential risk of airborne particulate PAH exposure was relatively high in some cities, and controlling PAH emissions at the source should be required to prevent pollution.
显示更多 [+] 显示较少 [-]Short-term effect of relatively low level air pollution on outpatient visit in Shennongjia, China 全文
2019
Liu, Chenchen | Liu, Yuewei | Zhou, Yide | Feng, Anhui | Wang, Chunhong | Shi, Tingming
Many cities in China are currently experiencing severe air pollution due to modernization. Previous studies investigating the effects of air pollutants exposure were particularly conducted in severe air polluted area and studies in low pollution areas were sparse.To quantitatively assess the short-term effects of ambient air pollutants (PM2.5, PM10, SO2, NO2, CO and O3) on outpatient visits in low pollution area, we conducted a time-series analysis from Jan 1, 2015 to Dec 31, 2016 in Shennongjia, China. Generalized additive model (GAM) was used to evaluate the influence of PM2.5 on daily hospital outpatient visits with different lag structures. We also conducted stratified analysis to explore the association between PM2.5 concentration and outpatient visits in different seasons.In the present study, per IQR increment of PM2.5, PM10, NO2, CO and O3 were related with 1.92% (0.76%–3.09%), 1.92% (0.77%–3.07%), 2.74% (95% CI: 1.65%–3.83%), 1.89% (95% CI: 0.68%–3.10%) and 2.30% (95% CI: 0.65%–3.95%) increase on respiratory outpatient visits. Significant associations were found between PM2.5, PM10, NO2 and respiratory outpatient visits at lag0:1, lag0:2 days. The effects of PM2.5 were more evident in the cool season than in the warm season.Our study showed that short-term exposures to PM2.5, PM10, NO2, CO and O3 were related with increased risk of outpatient visits of respiratory diseases, and highlighted the adverse effect of air pollutants exposure, especially PM2.5 exposure in cool season on health in low pollution area.
显示更多 [+] 显示较少 [-]Effects of simulated N deposition on photosynthesis and productivity of key plants from different functional groups of alpine meadow on Qinghai-Tibetan plateau 全文
2019
Shen, Hao | Dong, Shikui | Li, Shuai | Xiao, Jiannan | Han, Yuhui | Yang, Mingyue | Zhang, Jing | Gao, Xiaoxia | Xu, Yudan | Li, Yu | Zhi, Yangliu | Liu, Shiliang | Dong, Quanming | Zhou, Huakun | Yeomans, Jane C.
Nitrogen (N) deposition may alter physiological process of plants in grassland ecosystem. However, little is known about the response mechanism of individual plants in alpine regions to N deposition. We conducted a field experiment, and three treatments including 0 kg Nha⁻¹year⁻¹ (CK), 8 kgNha⁻¹year⁻¹ (Low N), and 72 kg N ha⁻¹ year⁻¹ (High N) were established to simulate N deposition in alpine meadow of Qinghai-Tibetan plateau. Our objectives were to determine the influence of N deposition on photosynthesis of different functional types of herbage species in alpine meadow, and finally characterize the links of plant productivity and photosynthesis with soil nutrients. The results showed that responses of alpine plants were species-specific under N deposition. Compared with grass species Agropyron cristatum and forb species Thalictrum aquilegifolium, the sedge species Carex melanantha was much more sensitive to N deposition; a lower N load (8 kgNha⁻¹year⁻¹) can cause a negative effect on its photosynthesis and productivity. Additionally, N deposition can promote plant N uptake and significantly decreased the C (carbon)/N (nitrogen) ratio. Compared with CK and low N deposition, high N deposition inhibited the photosynthesis and growth of the forb species Thalictrum aquilegifolium and sedge species Carex melanantha. In all three functional types of herbage species, the grass species A. cristatum tended to show a much higher photosynthetic capacity and better growth potential; thus, suggesting that grass species A. cristatum will be a more adaptative alpine plants under N deposition. Our findings suggested that plant photosynthetic responses to N deposition were species-specific, low N deposition was not beneficial for all the herbage species, and N deposition may change plant composition by the differential photosynthetic responses among species in alpine grassland. Plant composition shift to grass-dorminant in alpine regions might be attributed to a much higher photosynthetic potential and N use efficiency of grass species.
显示更多 [+] 显示较少 [-]The three ‘B’ of fish mercury in China: Bioaccumulation, biodynamics and biotransformation 全文
2019
Wang, Xun | Wang, Wen-Xiong
Mercury (Hg) is a global toxic pollutant and has raised the world's attention for decades. In this study, we reviewed the fish mercury levels in China (both marine and freshwater, as well as wild and farmed) documented over the past decade and their controlling environmental and biological factors. China is the largest contributor of global Hg cycling and the largest nation for the consumption and export of fish and fish product, thus Hg level in fish becomes a critical issue for food safety and public health. In China, Hg in fish is generally accumulated at a low level, but significant geographical differences were evident and formed the “hot spots” from the north to the south. For marine fish, the east (median: 70 ng g−1 ww, range: 5.0–330 ng g−1 ww) and southeast (median: 72 ng g−1 ww, range: 0.3–329 ng g−1 ww) of China have higher total Hg concentrations than the other coastal areas. For freshwater fish, Tibetan Plateau exhibited the highest total Hg levels (median: 104 ng g−1 ww, range: 5.0–868 ng g−1 ww). Risk assessment of the exposure of low-Hg-level fish to China's population deserves more attention and detailed fish consumption advisories to specific populations are urgently needed. The biokinetic model is a useful tool to characterize the underlying processes involved in Hg accumulation by fish. The diet (Hg concentration, speciation, food quality and quantity) and growth appear to be the important factors affecting the Hg levels of fish in China. The Hg biotransformation can also make contributions to Hg speciation and overall accumulation in fish. The intestinal microbes play an important role in Hg biotransformation and the potential for minimizing Hg contamination in fish deserves further investigation.
显示更多 [+] 显示较少 [-]Rhizobia population was favoured during in situ phytoremediation of vanadium-titanium magnetite mine tailings dam using Pongamia pinnata 全文
2019
Yu, Xiumei | Kang, Xia | Li, Yanmei | Cui, Yongliang | Tu, Weiguo | Shen, Tian | Yan, Min | Gu, Yunfu | Zou, Likou | Ma, Menggen | Xiang, Quanju | Zhao, Ke | Liang, Yueyang | Zhang, Xiaoping | Chen, Qiang
Mine tailings contain toxic metals and can lead to serious pollutions of soil environment. Phytoremediation using legumes has been regarded as an eco-friendly way for the rehabilitation of tailings-laden lands but little is known about the changes of microbial structure during the process. In the present study, we monitored the dynamic change of microbiota in the rhizosphere of Pongamia pinnata during a 2-year on-site remediation of vanadium-titanium magnetite tailings. After remediation, overall soil health conditions were significantly improved as increased available N and P contents and enzyme activities were discovered. There was also an increase of microbial carbon and nitrogen contents. The Illumina sequencing technique revealed that the abundance of taxa under Proteobacteria was increased and rhizobia-related OTUs were preferentially enriched. A significant difference was discovered for sample groups before and after remediation. Rhizobium and Nordella were identified as the keystone taxa at genus rank. Functional predictions indicated that nitrogen fixation was enhanced, corresponding well with qPCR results which showed a significant increase of nifH gene copy numbers by the 2nd year. Our findings for the first time elucidated that legume phytoremediation can effectively cause microbial communities to shift in favour of rhizobia in heavy metal contaminated soil.
显示更多 [+] 显示较少 [-]Suspended particles potentially enhance nitrous oxide (N2O) emissions in the oxic estuarine waters of eutrophic lakes: Field and experimental evidence 全文
2019
Zhou, Yiwen | Xu, Xiaoguang | Han, Ruiming | Li, Lu | Feng, Yu | Yeerken, Senbati | Kang, Song | Wang, Qilin
Estuaries are considered hot spots for the production and emissions of nitrous oxide (N2O) and easily occur suspended particles (SPS), however, current understanding about the role of SPS in the N2O emissions from the oxic estuarine waters of lacustrine ecosystems is still limited. In this study, field investigations were performed in the estuaries of hypereutrophic Taihu Lake, and laboratory simulations were simultaneously conducted to ascertain the characteristics of N2O emissions with different SPS concentrations. The results showed that the N2O emission fluxes ranged from 9.75 to 118.38 μg m−2 h−1, indicating a high spatial heterogeneity for the N2O emissions from the estuaries of Taihu Lake. Although the dissolved oxygen (DO) concentrations were up to 7.85 mg L−1 in the estuarine waters, from where the N2O emissions fluxes were approximately three times that of the lake regions. Multiple regression model selected the total nitrogen (TN), SPS, and DO concentrations as the crucial factors influencing the N2O emission fluxes. Particularly for SPS, the simulation results showed that the N2O concentrations increased gradually with the increase in the SPS concentrations of an oxic water column containing 4 mg L−1 of NO3−-N, indicating that a high SPS concentration can accelerate the N2O emissions. It was related to the change of denitrifying bacteria population in the SPS, as evidenced by its significantly positive correlation with N2O emissions (p < 0.01). Our findings will draw attentions to the role of SPS playing in the N2O productions and emissions in eutrophic lakes, and its effect on nitrogen cycle should be considered in the future study.
显示更多 [+] 显示较少 [-]The pollution level of the blaOXA-58 carbapenemase gene in coastal water and its host bacteria characteristics 全文
2019
Xin, Rui | Zhang, Kai | Wu, Nan | Zhang, Ying | Niu, Zhiguang
This paper investigated 10 carbapenemase genes and selected the hosts of these genes in the estuary of Bohai Bay. The results showed that the OXA-58 producer accounted for a large percentage of carbapenem resistant bacteria in the sampling points, whereas the VIM, KPC, NDM, IMP, GES, OXA-23, OXA-24, OXA-48 and OXA-51 producers were not detected in the study. In addition, 9 bacterial genera with 100% identical blaOXA₋₅₈ sequences, including Pseudomonas, Rheinheimera, Stenotrophomonas, Shewanella, Raoultella, Vibrio, Pseudoalteromonas, Algoriphagus, Bowmanella and Thalassospira, were isolated from seawater. It is suggested that the host of blaOXA₋₅₈ gene were varied and many kinds of them could survive in the seawater. Moreover, we preformed the quantitative RT-PCR and the result shown the abundance of blaOXA₋₅₈ fluctuated between 2.8×10⁻⁶ copies/16S and 2.46×10⁻⁴ copies/16S, which was of the same order of magnitude as some common antibiotic resistance genes in environment. Furthermore, the variation trend of blaOXA₋₅₈ gene suggested that pollution discharge and horizontal gene transfer could contribute to the increase of the gene in coastal area.
显示更多 [+] 显示较少 [-]Transfer of pyrrolizidine alkaloids between living plants: A disregarded source of contaminations 全文
2019
Selmar, Dirk | Wittke, Carina | Beck-von Wolffersdorff, Iris | Klier, Bernhard | Lewerenz, Laura | Kleinwächter, Maik | Nowak, Melanie
To elucidate the origin of the wide-spread contaminations of plant derived commodities with various alkaloids, we employed co-cultures of pyrrolizidine alkaloid (PA) containing Senecio jacobaea plants with various alkaloid free acceptor plants. Our analyses revealed that all plants grown in the vicinity of the Senecio donor plants indeed contain significant amounts of the PAs, which previously had been synthesized in the Senecio plants. These findings illustrate that typical secondary metabolites, such as pyrrolizidine alkaloids, are commonly transferred and exchanged between living plants. In contrast to the broad spectrum of alkaloids in Senecio, in the acceptor plants nearly exclusively jacobine is accumulated. This indicates that this alkaloid is exuded specifically by the Senecio roots. Although the path of alkaloid transfer from living donor plants is not yet fully elucidated, these novel insights will extend and change our understanding of plant-plant interactions and reveal a high relevance with respect to the widespread alkaloidal contaminations of plant-derived commodities. Moreover, they could be the basis for the understanding of various so far not fully understood phenomena in cultivation of various crops, e.g. the beneficial effects of crop rotations or the co-cultivation of certain vegetables.
显示更多 [+] 显示较少 [-]