细化搜索
结果 691-700 的 753
Reproductive functions of wild fish as bioindicators of reproductive toxicants in the aquatic environment 全文
2010
Allner, Bernhard | von der Gönna, Sabine | Griebeler, Eva-Maria | Nikutowski, Nadja | Weltin, Annette | Stahlschmidt-Allner, Petra
Background, aim, and scope Impacts on the reproductive health of wild fish are thought to be suitable early-warning tools indicating contamination of surface waters with endocrine-disrupting compounds. Ecotoxicological assessment of these field observations depends on the availability of reliable biomarkers to enable a discrimination of natural variations of reproductive functions from anthropogenic impacts. Materials and methods Roach and perch were caught at eight sampling sites by electrofishing twice a year in summer (July-September) and late autumn/winter (November-December) over a 2-year period. The sites are characterized by different degrees of anthropogenic impact and are situated within the greater Upper Rhine catchment. Age growths, parasitization and gonadal histology of more than 3,000 fish were examined. Results The two dominant fish species in German surface waters perch (Perca fluviatilis L.) and roach (Rutilus rutilus L.) differ considerably regarding their suitability for biomonitoring. Even in pristine habitats, perch show several variants of sex differentiation in terms of (1) the time of first sexual maturation, (2) the course of seasonal gonadal recrudescence, and (3) the occurrence of heterologous germ cells (testes ova). A statistically significant elevated proportion of males were observed in fish obtained from a TBT-contaminated marina and suppression of gonadal ripening was observed in females caught in a sewage-contaminated brook. Both effects appear to be due to chemical contamination. The only “natural” alteration of sex differentiation in roach was related to parasitization with Ligula intestinalis (Eucestoda, Pseudophyllidea). Other deviations from the normal pattern of sex differentiation were (1) suppression of ovarian ripening and (2) asynchronic seasonal gonadal recrudescence. These are strong indicators of an anthropogenically induced impact on reproductive health. Feminization phenomena were not observed at either the individual or the population level. Discussion Interpretation of field monitoring results concerning reproductive health requires large numbers of samples and detailed knowledge of the natural plasticity of sex differentiation in the species under investigation. A better understanding of the mechanisms underlying the plasticity of sex differentiation in perch is indispensable to enable perch to be used as a bioindicator. Conclusions Deviation from the strict and probably endogenous control of sex differentiation in roach is a strong and unequivocal warning signal. Recommendations and perspectives The subject of fish monitoring should be addressed in the context of a broader spectrum of potential risks. Seasonal and ontogenetic integrity of gonadal development and recrudescence are potent biomarkers, provided the natural process is well documented for the species under investigation.
显示更多 [+] 显示较少 [-]Recent trends of the emission characteristics from the road construction industry 全文
2010
Chauhan, Sippy K | Sharma, Sangita | Shukla, Anuradha | Gangopadhyay, S
Bitumen is a black, thermoplastic, hydrocarbon material derived from the processing of crude oil. At ambient temperature, bitumen is solid and does not present any health/environmental risks. This is one of the main reasons that bitumen is widely used for road construction all over the world. But during manufacturing/modification according to its application, storage, transportation, and use of bitumen is heated giving off various hydrocarbons emissions. In recent years, there has been increasing interest in investigating the potential of bitumen emissions to cause health effects. This is mainly because of the reason that bitumen has small amount of poly-aromatic hydrocarbons, along with some other volatiles like benzene, toluene, etc., which are known to be carcinogenic in nature. Thus, assessment of the emission characteristics and health hazards of bitumen fumes may have far reaching industrial economic and public health implications. In this review, we will discuss about the emission characteristics from bitumen, asphalts, or road construction, which is mainly contributed by bitumen fumes. Sampling strategies and analytical methods employed are also described briefly.
显示更多 [+] 显示较少 [-]Removal of 4-chlorobenzoic acid from spiked hydroponic solution by willow trees (Salix viminalis) 全文
2010
Deavers, Kamila | Macek, Thomas | Karlson, Ulrich G | Trapp, Stefan
Background Chlorobenzoic acids (CBA) are intermediate products of the aerobic microbial degradation of PCB and several pesticides. This study explores the feasibility of using basket willows, Salix viminalis, to remove 4-CBA from polluted sites, which also might stimulate PCB degradation. Methods The removal of 4-CBA by willow trees was investigated with intact, septic willow trees growing in hydroponic solution and with sterile cell suspensions at concentrations of 5 mg/L and 50 mg/L 4-CBA. Nutrient solutions with different levels of ammonium and nitrate were prepared to achieve different pH levels. The concentration of 4-CBA was tracked over time and quantified by HPLC. Results and discussion At the low level of 4-CBA (5 mg/L), willows removed 70% (pH 4.2) to 90% (pH 6.8), while 48% (pH 4.2) to 52% (pH 6.8) of the water was transpired. At the high 4-CBA level (50 mg/L), the pH varied between 4.4 and 4.6, and 10% to 30% of 4-CBA was removed, but only 5% to 9% of the water. In sterile cell suspensions, removal of 4-CBA by fresh biomass was much higher than removal by dead biomass. Conclusions The results indicate that 4-CBA is toxic to willow trees at 50 mg/L. The removal of 4-CBA from solution is by both passive processes (uptake with water, sorption to plant tissue) and metabolic processes of the plants. Recommendations and outlook Plants, such as willow trees, might assist in the degradation of PCB and their degradation products CBA.
显示更多 [+] 显示较少 [-]Removal of estrone, 17α-ethinylestradiol, and 17ß-estradiol in algae and duckweed-based wastewater treatment systems 全文
2010
Shi, Wenxin | Wang, Lizheng | Rousseau, Diederik P. L. | Lens, P. N. L. (Piet N. L)
Background, aim, and scope Many pollutants have received significant attention due to their potential estrogenic effect and are classified as endocrine disrupting compounds (EDCs). Because of possible ecological effects and increased attention for water reuse schemes, it is important to increase our understanding of the EDC removal capacities of various wastewater treatment systems. However, there has so far been little research on the fate and behavior of EDCs in stabilization pond systems for wastewater treatment, which represent an important class of wastewater treatment systems in developing countries because of their cost-effectiveness. The aim of this work is to study the fate and behavior of EDCs in algae and duckweed ponds. Because the synthetic hormone 17α-ethinylestradiol (EE2) and the natural hormones estrone (E1), as well as 17β-estradiol (E2), have been detected in effluents of sewage treatment plants and been suggested as the major compounds responsible for endocrine disruption in domestic sewage; E1, E2, and EE2 were therefore chosen as target chemicals in this current work. Materials and methods Both batch tests and continuous-flow tests were carried out to investigate the sorption and biodegradation of estrogens in algae and duckweed pond systems. The applied duckweed was a Lemna species. The applied algae was a mixture of pure cultures of six different algae genera, i.e., Anabaena cylindrica, Chlorococcus, Spirulina platensis, Chlorella, Scenedesmus quadricauda, and Anaebena var. Synthetic wastewater were used in all tests. The concentrations of estrogens were measured with three different enzyme-linked immunosorbent assay kits specific for E1, E2, or EE2. When the concentrations of estrogens in water samples were below the lowest quantitative analysis range (0.05 µg/l), preconcentration of the water samples were performed by means of solid phase extraction (SPE) with C18 cartridges. Results The 6-day batch tests show that the presence of algae or duckweed accelerated the removal of the three estrogens from the synthetic wastewater. More estrogens were removed in the tests with duckweed than in tests with algae or with wastewater. In the sorption tests, a swift sorption of the three estrogens was observed when the estrogens were contacted with duckweed or algae, while the estrogen concentrations in tap water kept unchanged during the 3-h sorption tests. The mass balances indicated that only about 5% of the estrogens were bound to the algae sediment or duckweed at the end of the 6-day tests. Results of the continuous-flow tests revealed that the algae and duckweed ponds effectively removed E1, E2, and EE2 even at nanograms per liter level. Interconversion of E1 and E2 occurred both in batch and continuous-flow tests. E2 could be readily transformed to E1, especially in the tests with algae. Discussion Different processes like sorption, biodegradation and photolytic degradation might play an important role in the removal of estrogens from the aquatic phase. The 3-h sorption tests support the importance of sorption for estrogen removal, in which a rapid initial sorption was observed over the first 2 min for E1/E2/EE2 to both duckweed and algae. In the 6-day batch tests, estrogens were sorbed by algae or duckweed during the early stage when algae and duckweed were contacted with the synthetic wastewater and the sorbed estrogens were further biodegraded by the microorganisms developed in the wastewater. The persistent estrogen concentrations in tap water, however, implied that no sorption, biodegradation, or photolytic degradation occurred in tap water under the specific experimental conditions. Under aerobic or anoxic conditions, E2 could be first oxidized to E1, which is further oxidized to unknown metabolites and finally to CO₂ and water. Under anaerobic conditions, E1 can also be reduced to E2. However, the interconversion might be much more complex especially in the tests with algae because both aerobic and anaerobic conditions occurred in these tests due to the variation of the dissolved oxygen concentration induced by the light regime. Conclusions This study shows that estrogens, E1, E2, and EE2, can be effectively removed from the continuous-flow algae and duckweed ponds even when their concentrations are at nanograms per liter level. The presence of algae and duckweed accelerate the removal of estrogens from the synthetic wastewater because estrogens can be quickly sorbed on duckweed or algae. The sorbed estrogens are subsequently degraded by microorganisms, algae, or duckweed in the wastewater treatment system. E1 and E2 are interconvertible in both duckweed and algae pond systems. E2 can be readily transformed to E1, especially in the tests with algae. Recommendation and perspectives Based on the tests performed so far, one can conclude that both sorption and biodegradation are important to the estrogens removal from stabilization pond systems for wastewater treatment. Further research using, e.g., radioimmunoassay is needed to investigate the biodegradation pathway of estrogens in algae and duckweed ponds.
显示更多 [+] 显示较少 [-]A novel method using sedimentary metals and GIS for measuring anthropogenic change in coastal lake environments 全文
2010
Olmos, Marco Antonio | Birch, Gavin F.
Background, aim and scope A new method using sedimentary metals and geographic information system as indicators for assessing temporal and spatial anthropogenic change in estuaries has been applied to a large coastal lake (Lake Macquarie) in New South Wales, Australia. Materials, methods and results Two vintages of data (1975 and 2003) on surficial sediment metal (Cd, Cu, Pb and Zn) concentrations combined with ²¹⁰Pb core profiles were used to determine past changes in sediment quality and to predict possible future relaxation rates for the entire lake area in response to change in anthropogenic pressure. Sediment cores showed distinct vertical profiles; sedimentation rates in the northern part of the lake were consistent (14 mm year⁻¹) over the 55-year period investigated. Discussion and conclusions Surficial metal concentrations were highest in the 1975 sediment than in the 2003 samples, with the northern part of Lake Macquarie having much greater metal concentrations than the rest of the lake. Past and future declining sedimentary metal concentrations in the northern part of the lake were expected due to the closure of a nearby Pb-Zn smelter; however, possible increases in Cu in the south of the lake to the year 2020 were surprising. The new method presented in this study can assist estuary managers by providing data on past, present and future conditions, which are essential in making informed decisions for the improvement of estuarine systems.
显示更多 [+] 显示较少 [-]Microbial dynamics in a sequencing batch reactor treating alkaline peroxide mechanical pulp and paper process wastewater 全文
2010
Zhan, Peng | Chen, Jienan | He, Gang | Fang, Guigan | Shi, Yingqiao
Background, aim, and scope For many years, highly concentrated wastewater generated from the pulp and paper industry has become the focus of much concern worldwide. The objectives of this study were to determine the treatment efficiency of the alkaline peroxide mechanical pulp (APMP) process wastewater using a sequencing batch reactor (SBR) and analyze the microbial dynamics of the wastewater treatment system using the random amplified polymorphic DNA (RAPD) method. Materials and methods An SBR was applied to the treatment of APMP pulp and paper process wastewater. The wastewater characteristics and many physicochemical operator indicators in the wastewater treatment process were analyzed and determined according to standard methods. Microbial 16 S rDNA in active sludge was extracted, amplified, and analyzed using the RAPD method for the microbial dynamics of the wastewater treatment system. Results and discussion Ten kinds of natural organic compounds of plants such as monoterpene were detected in the APMP pulp and paper process wastewater. With an influent chemical oxygen demand (COD) that varied in the range of 685.7 to 907.5 mg/L, the corresponding effluent COD was 176.5 to 266.1 mg/L and the removal efficiency was 70.3% to 79.8%. An optimal strain (S308: CAGGGGTGGA) was selected to study the population dynamics and diversity of the bacterial community. The RAPD-polymerase chain reaction (PCR) fingerprints showed very high polymorphism of the genetic bands (78-100%). Four groups of species were clustered using the unweighted pair group method with arithmetic (UPGMA) analysis, and the genetic distance was close between the species within each group. The Shannon-Weaver index was high and varied over time with the COD removal. Conclusions The RAPD-PCR technique can be used to study microbial dynamics, which was shown to vary over time with the removal efficiency of SBR treating APMP pulp and paper process wastewater.
显示更多 [+] 显示较少 [-]Leachability and leaching patterns from aluminium-based water treatment residual used as media in laboratory-scale engineered wetlands 全文
2010
Babatunde, A. O | Zhao, Y. Q
Concept and purpose Virtually all water treatment facilities worldwide generate an enormous amount of water treatment residual (WTR) solids for which environmentally friendly end-use options are continually being sought as opposed to their landfilling. Aluminium-based WTR (Al-WTR) can offer huge benefits particularly for phosphorus (P) removal and biofilm attachment when used as media in engineered wetlands. However, potential environmental risks that may arise from the leaching out of its constituents must be properly evaluated before such reuse can be assured. This paper presents results of an assessment carried out to monitor and examine the leachability and leaching patterns of the constituents of an Al-WTR used as media in laboratory-scale engineered wetland systems. Main features, materials and methods Al-WTR was used as media in four different configurations of laboratory-scale engineered wetland systems treating agricultural wastewater. Selected metal levels were determined in the Al-WTR prior to being used while levels of total and dissolved concentration for the metals were monitored in the influent and effluent samples. The increase or decrease of these metals in the used Al-WTR and their potential for leaching were determined. Leached metal levels in the effluents were compared with relevant environmental quality standards to ascertain if they pose considerable risks. Results Aluminium, arsenic, iron, lead and manganese were leached into the treated effluent, but aluminium exhibited the least leaching potential relative to its initial content in the fresh Al-WTR. Levels of P increased from 0.13 mg-P/g (fresh Al-WTR) to 33.9-40.6 mg-P/g (used Al-WTR). Dissolved levels of lead and arsenic (except on one instance) were below the prescribed limits for discharge. However, total and dissolved levels of aluminium were in most cases above the prescribed limits for discharge, especially at the beginning of the experiments. Conclusions, recommendations and perspectives Overall, the study indicates that leaching is observed when Al-WTR is beneficially reused for enhanced P removal in engineered wetlands. In particular, levels of aluminium in the treated effluent beyond the prescribed limits of 0.2 mg/l were observed. However, since the results obtained indicate that aluminium leached is mostly associated with solids, a post-treatment unit which can further reduce the level of aluminium in the treated effluent by filtering out the solids could serve to mitigate this. In addition, plants used in such wetland systems can uptake metals and this can also be a potential solution to ameliorating such metal releases. Periodic monitoring is thus advised. Notwithstanding, the use of Al-WTR as a media in engineered wetlands can serve to greatly enhance the removal of P from wastewaters and also serve as support material for biofilm attachment.
显示更多 [+] 显示较少 [-]Assessment of chemical effects on aromatase activity using the H295R cell line 全文
2010
Higley, Eric B | Newsted, John L | Zhang, Xiaowei | Giesy, John P | Hecker, Markus
Background, aim, and scope In response to concerns about chemical substances that can alter the function of endocrine systems and may result in adverse effects on human and ecosystem health, a number of in vitro tests have been developed to identify and assess the endocrine disrupting potential of chemicals and environmental samples. One endpoint that is frequently used in in vitro models for the assessment of chemical effects on the endocrine system is the alteration of aromatase activity (AA). Aromatase is the enzyme responsible for converting androgens to estrogens. Some commonly used aromatase assays, including the human microsomal assay that is a mandatory test in US-EPA's endocrine disruptor screening program (EDSP), detect only direct effects of chemicals on aromatase activity and not indirect effects, including changes in gene expression or transcription factors. This can be a problem for chemical screening initiatives such as the EDSP because chemicals can affect aromatase both indirectly and directly. Here we compare direct, indirect, and combined measurements of AA using the H295R cell line after exposure to seven model chemicals. Furthermore, we compare the predictability of the different types of AA measurements for 17β-estradiol (E2) and testosterone (T) production in vitro. Materials and methods H295R cells were exposed to forskolin, atrazine, letrozole, prochloraz, ketoconazole, aminoglutethimide, and prometon for 48 h. Direct, indirect, and combined effects on aromatase activity were measured using a tritiated water-release assay. Direct effects on aromatase activity were assessed by exposing cells only during the conduct of the tritium-release assay. Indirect effects were measured after exposing cells for 48 h to test chemicals, and then measuring AA without further chemical addition. Combined AA was measured by exposing cells prior and during the conduction of the tritium-release assay. Estradiol and testosterone were measured by ELISA. Results and discussion Exposure to the aromatase inhibitors letrozole, prochloraz, ketoconazole, and aminoglutethimide resulted in greater indirect aromatase activity after a 48-h exposure due to presumed compensatory mechanisms involved in aromatase activity regulation. Forskolin and atrazine caused similar changes in hormone production and enzyme profiles, and both chemicals resulted in a dose-dependent increase in E2, T, and indirect AA. Neither of these two chemicals directly affected AA. For most of the chemicals, direct and combined AA and E2 were good predictors of the mechanism of action of the chemical, with regard to AA. Indirect aromatase activity was a less precise predictor of effects at the hormone level because of presumed feedback loops that made it difficult to predict the chemicals' true effects, mostly seen with the aromatase inhibitors. Further, it was found that direct and indirect AA measurements were not reliable predictors of effects on E2 for general inducers and inhibitors, respectively. Conclusions Differential modulation of AA and hormone production was observed in H295R cells after exposure to seven model chemicals, illustrating the importance of measuring multiple endpoints when describing mechanisms of action in vitro. Recommendations and perspectives For future work with the H295R, it is recommended that a combination of direct and indirect aromatase measurements is used because it was best in predicting the effects of a chemical on E2 production and its mechanism of action. Further, it was shown that direct AA measurements, which are a common way to measure AA, must be used with caution in vitro.
显示更多 [+] 显示较少 [-]A microbiological study of the self-cleaning potential of oily Arabian Gulf coasts 全文
2010
Mahmoud, Huda | Al-Hasan, Redha | Khanafer, Majida | Raḍwān, Samīr Muḥammad
Background, aim, and scope Due to the active production and transport of crude oil in the Arabian Gulf region, the Arabian Gulf coasts are routinely polluted with oil. Therefore, such coasts have been subject of studies aiming at assessing the roles of indigenous microbial consortia in cleaning these environments. In the present study, epilithic microbial communities along Kuwait coasts were studied for their oil degradation potential. Materials and methods Gravel particles coated with deep green biofilms were collected from four coastal sites in autumn, winter, and spring. Phototrophs in these consortia were determined in terms of their chlorophyll a contents and identified by their morphological characteristics. Total bacteria were counted microscopically and cultivable bacteria by the dilution plating method on nutrient agar as well as on inorganic medium containing oil as a sole source of carbon and energy. The bacterial community structures were also characterized and compared by denaturing gradient gel electrophoresis (DGGE). Results Epilithic biomass samples from the four sites in the three seasons were rich in diatoms and picocyanobacteria as well as total bacteria. Direct counting gave bacterial numbers per square centimeter gravel surface of 2 to 6 × 10⁷ cells depending on the sampling site and season. Cultivable bacterial numbers on nutrient agar and crude oil as a sole source of carbon were 3 × 10³ to 8 × 10⁴ and 1 × 10³ to 7 × 10³ cells/cm² gravel surface, respectively. The DGGE profiles of epilithon biomass samples revealed major 16S rDNA bands that matched bands of pure oil-utilizing bacterial isolates. Discussion The microbial communities showed a degree of consistency in all sites and seasons. Conclusions The microbial consortia coating gravel particles are potentially suitable tools for self-cleaning of oily Gulf coasts. They are rich in oil-utilizing bacteria whose activities are probably enhanced by oxygen produced by the phototrophic partners in the consortia. Recommendations and perspectives The combination of conventional microbiological analysis with molecular approaches gives an enhanced idea about natural microbial communities especially those with environmental application potential.
显示更多 [+] 显示较少 [-]Modification of exopolysaccharide composition and production by three cyanobacterial isolates under salt stress 全文
2010
Ozturk, Sahlan | Aslim, Belma
Background, aim, and scope Polysaccharides are renewable resources representing an important class of polymeric materials of biotechnological interest, offering a wide variety of potentially useful products to mankind. Exopolysaccharides (EPSs) of microbial origin with a novel functionality, reproducible physico-chemical properties, stable cost and supply, became a better alternative to polysaccharides of algal origin. EPSs are believed to protect bacterial cells from desiccation, heavy metals or other environmental stresses, including hostimmune responses, and to produce biofilms, thus enhancing the cells chances of colonising special ecological niches. One of the most important stress factor is salt stress for microorganisms. The present investigation is aimed to determine correlation between salt resistance and EPS production by three cyanobacterial isolates (Synechocystis sp. BASO444, Synechocystis sp. BASO507 and Synechocystis sp. BASO511). It is also aimed to investigate the effect of salt concentrations on EPS production by cyanobacteria and effect of salt on monosaccharide composition of EPS. Materials and methods Cyanobacterial isolates were identified by 16 S rRNA analysis. Its salt (NaCl) tolerance and association with exopolysaccharides (EPSs) production in three cyanobacterial isolates were investigated. Also, EPS was analysed by HPLC for monomer characterization. Results Increased EPS production was associated with NaCl tolerance. The most tolerant isolate, Synechocystis sp. BASO444, secreted the most EPS (500 mg/L). EPS production by Synechocystis sp. BASO444, Synechocystis sp. BASO507 and Synechocystis sp. BASO511 was investigated following exposure to 0.2 and 0.4 M NaCl. Also, flasks containing medium without NaCl were inoculated in the same manner to serve as controls. The monosaccharide compositions of EPS produced by the three isolates following exposure to 0.2 M NaCl were analysed by HPLC. Control EPS of BASO444 was composed of glucose (97%) and galacturonic acid (3%). The composition of BASO511 (control) was glucose (95%), xylose (4.80%), arabinose (0.13%), glucuronic acid (0.03%) and galacturonic acid (0.04%). However, the composition of BASO507 (control) was glucose (0.98%), xylose (98.00%), arabinose (1.00%), glucuronic acid (0.01%) and galacturonic acid (0.01%). In the presence of 0.2 M NaCl, EPS compositions and ratios of three cyanobacterial isolates changed. Discussion Although hyperproduction of EPS in response to starvation, antiviral activity, thickening agent and cosmetic industry for product formulations has been reported for cyanobacteria, the effect of NaCl on EPS production in cyanobacteria is not a popular area of study. There are no clear reports correlating EPS production and NaCl tolerance. The gap in the data about the effect of NaCl on cyanobacterial EPS production was filled by this investigation, and the results of our study have important implications in both the industrial and environmental arenas. Conclusions Our results indicate that 1) exposure to elevated concentrations of NaCl affects the composition of EPS produced by Synechocystis sp. BASO444, Synechocystis sp. BASO507 and Synechocystis sp. BASO511, and 2) there is a correlation between NaCl tolerance and EPS production in some cyanobacteria. Recommendations and perspectives Differences in the monosaccharide composition and ratios of EPS may promote NaCl tolerance in these microorganisms. As well, these alternative composition polysaccharides may be important for industrial applications.
显示更多 [+] 显示较少 [-]