细化搜索
结果 691-700 的 6,560
Measurement of N2O emissions over the whole year is necessary for estimating reliable emission factors 全文
2020
Shang, Ziyin | Abdalla, Mohamed | Kuhnert, Matthias | Albanito, Fabrizio | Zhou, Feng | Xia, Longlong | Smith, Pete
Nitrous oxide emission factors (N₂O-EF, percentage of N₂O–N emissions arising from applied fertilizer N) for cropland emission inventories can vary with agricultural management, soil properties and climate conditions. Establishing a regionally-specific EF usually requires the measurement of a whole year of N₂O emissions, whereas most studies measure N₂O emissions only during the crop growing season, neglecting emissions during non-growing periods. However, the difference in N₂O-EF (ΔEF) estimated using measurements over a whole year (EFwy) and those based on measurement only during the crop-growing season (EFgₛ) has received little attention. Here, we selected 21 studies including both the whole-year and growing-season N₂O emissions under control and fertilizer treatments, to obtain 123 ΔEFs from various agroecosystems globally. Using these data, we conducted a meta-analysis of the ΔEFs by bootstrapping resampling to assess the magnitude of differences in response to management-related and environmental factors. The results revealed that, as expected, the EFwy was significantly greater than the EFgₛ for most crop types. Vegetables showed the largest ΔEF (0.19%) among all crops (0.07%), followed by paddy rice (0.11%). A higher ΔEF was also identified in areas with rainfall ≥600 mm yr⁻¹, soil with organic carbon ≥1.3% and acidic soils. Moreover, fertilizer type, residue management, irrigation regime and duration of the non-growing season were other crucial factors controlling the magnitude of the ΔEFs. We also found that neglecting emissions from the non-growing season may underestimate the N₂O-EF by 30% for paddy fields, almost three times that for non-vegetable upland crops. This study highlights the importance of the inclusion of the non-growing season in the measurements of N₂O fluxes, the compilation of national inventories and the design of mitigation strategies.
显示更多 [+] 显示较少 [-]Molecular density regulating electron transfer efficiency of S. oneidensis MR-1 mediated roxarsone biotransformation 全文
2020
Wang, Gang | Han, Neng | Liu, Li | Ke, Zhengchen | Li, Baoguo | Chen, Guowei
Efficient extracellular electron transport is a key for sufficient bioremediation of organoarsenic pollutants such as 4-hydroxy-3-nitrobenzenearsonic acid (roxarsone). The related apparent kinetics characteristics are essential for engineering practice of bioremediation activities and for full understanding the environmental fate of roxarsone, yet remains poorly understood. We report, to our knowledge, the first study of the electron transfer characteristics between roxarsone and participating S. oneidensis MR-1. The electron transfer rate during roxarsone biotransformation was estimated up to 3.1 × 10⁶ electrons/cell/s, with its value being clearly associated with the apparent roxarsone concentration. Lowing roxarsone concentration extended the average separation distance between cells and neighboring roxarsone molecules and thereby augmented electric resistance as well as extended cell movement for foraging, thus reduced electron transfer rate. In addition, the presence of roxarsone significantly stimulated population growth of S. oneidensis MR-1 with nearly doubled maximum specific growth rate, albeit with clearly increased lag time, as compared with that of none-roxarsone scenario. These findings provide, at the first time, basic biostoichiometry of S. oneidensis MR-1 induced roxarsone biotransformation, which may shed lights for full understanding of roxarsone transformation process in waste treatment systems that are necessary for engineering practice and/or environmental risks assessment.
显示更多 [+] 显示较少 [-]Water column nutrient concentrations are related to excretion by benthic invertebrates in Lake Taihu, China 全文
2020
Peng, Kai | Qin, Boqiang | Cai, Yongjiu | Gong, Zhijun | Jeppesen, Erik
Internal release of nutrients is an important contributor to the nutrient dynamics in shallow eutrophic lakes. Zoobenthic organisms may contribute to this release by excreting nutrients to the overlaying water. Based on experiments and using results from previous experimental studies as well as field monitoring density data from 2007 to 2017, we calculated the annual and seasonal nutrient excretions of the two most common macroinvertebrates (Corbicula fluminea and Limnodrilus hoffmeisteri) in Lake Taihu, China. We compared these rates with the concentrations of NH₄–N, total nitrogen (TN), PO₄–P and total phosphorus (TP) in the lake water as well as with previous results of release rates from undisturbed sediments collected in the lake. The spatial distribution of nutrient excretion by the two invertebrate species varied markedly among sites and years. Regression analyses revealed significant relationships between total nutrient excretions by these two species and the concentrations of NH₄–N, TN, PO₄–P and TP in the lake, but with seasonal differences. The relationship was overall strongest in winter, followed by spring, and weakest in summer and autumn. The flux of NH₄–N and PO₄–P released by the two macroinvertebrate species were equivalent to as much as 50% and 66%, respectively, of the sediment release recorded in lab experiments under undisturbed conditions; however, the percentages would be somewhat lower under field conditions where the sediment is subjected to frequent wind-induced resuspension and fish disturbance, enhancing the release rates. The release declined during the study period due to a reduction in the density of macroinvertebrates, perhaps indicating increasing stocking of fish since 2007. Our results indicate that benthic invertebrates are important contributor to the internal loading in shallow eutrophic lakes.
显示更多 [+] 显示较少 [-]Interrogating cadmium and lead biosorption mechanisms by Simplicillium chinense via infrared spectroscopy 全文
2020
Jin, Zhongmin | Xie, Lin | Zhang, Tuo | Liu, Lijie | Black, Thom | Jones, K. C. (Kevin C.) | Zhang, Hao | Wang, Xinzi | Jin, Naifu | Zhang, Dayi
Fungi-associated phytoremediation is an environmentally friendly and cost-efficient approach to remove potential toxic elements (PTEs) from contaminated soils. Many fungal strains have been reported to possess PTE-biosorption behaviour which benefits phytoremediation performance. Nevertheless, most studies are limited in rich or defined medium, far away from the real-world scenarios where nutrients are deficient. Understanding fungal PTE-biosorption performance and influential factors in soil environment can expand their application potential and is urgently needed. This study applied attenuated total reflection Fourier-transform infrared (ATR-FTIR) coupled with phenotypic microarrays to study the biospectral alterations of a fungal strain Simplicillium chinense QD10 and explore the mechanisms of Cd and Pb biosorption. Both Cd and Pb were efficiently adsorbed by S. chinense QD10 cultivated with 48 different carbon sources and the biosorption efficiency achieved >90%. As the first study using spectroscopic tools to analyse PTE-biosorption by fungal cells in a high-throughput manner, our results indicated that spectral biomarkers associated with phosphor-lipids and proteins (1745 cm⁻¹, 1456 cm⁻¹ and 1396 cm⁻¹) were significantly correlated with Cd biosorption, suggesting the cell wall components of S. chinense QD10 as the primary interactive targets. In contrast, there was no any spectral biomarker associated with Pb biosorption. Addtionally, adsorption isotherms evidenced a Langmuir model for Cd biosorption but a Freundlich model for Pb biosorption. Accordingly, Pb and Cd biosorption by S. chinense QD10 followed discriminating mechanisms, specific adsorption on cell membrane for Cd and unspecific extracellular precipitation for Pb. This work lends new insights into the mechanisms of PTE-biosorption via IR spectrochemical tools, which provide more comprehensive clues for biosorption behaviour with a nondestructive and high-throughput manner solving the traditional technical barrier regarding the real-world scenarios.
显示更多 [+] 显示较少 [-]A study on the mixture repairing effect of biochar and nano iron oxide on toxicity of Cd toward muskmelon 全文
2020
Zou, Zhengkang | Wang, Yunqiang | Huang, Jia-Li | Lei, Zhen | Wan, Fengting | Dai, Zhaoyi | Yi, Licong | Li, Junli
Soil contamination with cadmium (Cd) has become a serious problem, adversely affecting food safety and human health. Effective methods are urgently needed to alleviate toxicity of Cd in plants. In this study, a nine-week continuous pot experiments was conducted to explore the effectiveness of the different nano iron oxide (α-Fe₂O₃, γ-Fe₂O₃, Fe₃O₄) alone and combined with biochar in muskmelon grown on a Cd-contaminated soil. The antioxidant system, chlorophyll, soluble protein, other physiological indexes of muskmelon leaves and the distribution of Cd in matrix soil, leaves and fruit were detected. The results showed that Cd was readily absorbed by plants and caused oxidative stress on plants, while biochar, α-Fe₂O₃ nanoparticles (NPs) and their mixture group (BFe1 group) could significantly improve it. Specifically, the three treatments reduced the Cd content of the fruit by 19.51–78.86%, reduced the Cd content of leaves by 15.44–36.23% and 22.36–31.77% in weeks 3 and 5, respectively. For the activity of enzymes, three treatments decreased superoxide dismutase (SOD) activity and catalase (CAT) activity by 3.41–38.57% and 24.27–30.33% in week 7, respectively. So BFe1 group application immobilized Cd in soil and reduced Cd partitioning in the aboveground tissues. Overall the combination of biochar and α-Fe₂O₃ NPs can alleviate Cd toxicity in muskmelon and can protect human beings from Cd exposure.
显示更多 [+] 显示较少 [-]Enhancing Cr(VI) reduction and immobilization by magnetic core-shell structured NZVI@MOF derivative hybrids 全文
2020
Fang, Ying | Wen, Jia | Zhang, Haibo | Wang, Qian | Hu, Xiaohong
Hexavalent chromium (Cr(VI)) has significantly threatened the environmental health because of its distinct toxicity. A novel magnetic core-shell structured NZVI@ZD composite was designed for simultaneous adsorption and reduction of Cr(VI). NZVI@ZD was synthesized by carbonization of the as-prepared core-shell structure NZVI@zeolitic imidazole framework-67 (ZIF-67). After carbonization, the original ZIF-67 shell shape was preserved well with marginal parts developing to graphitized carbon. Both cobalt (Co) and NZVI nanoparticles were finely dispersed in the porous ZIF-67 derivative (ZD). NZVI@ZD exhibited excellent removal performance for Cr(VI), owing to its high specific surface area and large pore size favorable for Cr(VI) adsorption and diffusion. The maximum adsorption capacity of NZVI@ZD for Cr(VI) was surprisingly as high as 226.5 mg g⁻¹, surpassing the pristine ZIF-67 (29.35 mg g⁻¹) and NZVI@ZIF-67 (36.53 mg g⁻¹). Zeta potential and X-ray photoelectron spectroscopy (XPS) spectra revealed that electrostatic attraction, reduction and precipitation might be involved in the Cr(VI) removal process by NZVI@ZD, resulting in the conversion of the adsorbed Cr(VI) to Cr(III) of lower toxicity and an eventual immobilization on the NZVI@ZD. The magnetic core-shell structured NZVI@ZD possessed superior adsorptive reactivity for Cr(VI) to most other traditional or newly reported materials, thus should be deemed highly efficient for Cr(VI)-contaminated wastewater treatment.
显示更多 [+] 显示较少 [-]Distribution and availability of rare earth elements and trace elements in the estuarine waters of the Ría of Huelva (SW Spain) 全文
2020
Cánovas, Carlos Ruiz | Basallote, Maria Dolores | Macías, Francisco
Metal pollution in estuaries represents a serious environmental challenge, especially in areas affected by industrial and mining activities. This study investigates the metal partitioning and availability of rare earth elements (REE), Y and other trace metals (Ag, Tl, U and Cs) in the Ria of Huelva estuary (SW Spain), strongly affected by mining and industrial activities. A 30 h monitoring campaign was performed collecting periodic water samples and deploying diffusive gradient in thin films (DGTs) devices to determine the main factors controlling metal availability. The dissolved concentrations of U (3118–3952 ng/L) and Cs (284–392 ng/L) were in the same order of magnitude than those reported in other estuaries and coastal waters worldwide, however, REE (26–380 ng/L), Y (15–109 ng/L), Ag (14–307 ng/L) and Tl (29–631 ng/L) concentrations exceeded these values for the same salinities. Unlike most metals (i.e. Ag, Tl, U, Cs), which were mainly found in the dissolved form (87–100% of total), REE and Y were found in the particulate phase (22–36% of total). Metal lability was mainly related to the concentration in the water column following this order: U>REE>Y>Ag>Tl. A similar binding mechanism was observed for Tl and Cd, due to its chemical affinity. This relationship between chemical properties and absorption by DGT-resin was also observed for REE (and Y), Rb and Sr, which may cause bioaccumulation upon persistent exposure, considering the ability of these metals to cross the biological membranes. The lability of metals predicted by geochemical codes did not coincide with absorption of labile metals by DGTs due probably to the instability of complexes in contact with the DGT membranes, the inability of metals to form thermodynamically stable complexes or the absorption of colloids. From this work it can be concluded that DGT passive sampling should complement traditional sampling to monitor metal availability in aquatic environments.
显示更多 [+] 显示较少 [-]Large eddy simulation of vehicle emissions dispersion: Implications for on-road remote sensing measurements 全文
2020
Huang, Yuhan | Ng, Elvin C.Y. | Surawski, Nic C. | Yam, Yat-Shing | Mok, Wai-Chuen | Liu, Chun-Ho | Zhou, John L. | Organ, Bruce | Chan, Edward F.C.
On-road remote sensing technology measures the concentration ratios of pollutants over CO₂ in the exhaust plume in half a second when a vehicle passes by a measurement site, providing a rapid, non-intrusive and economic tool for vehicle emissions monitoring and control. A key assumption in such measurement is that the emission ratios are constant for a given plume. However, there is a lack of study on this assumption, whose validity could be affected by a number of factors, especially the engine operating conditions and turbulence. To guide the development of the next-generation remote sensing system, this study is conducted to investigate the effects of various factors on the emissions dispersion process in the vehicle near-wake region and their effects on remote sensing measurement. The emissions dispersion process is modelled using Large Eddy Simulation (LES). The studied factors include the height of the remote sensing beam, vehicle speed, acceleration and side wind. The results show that the measurable CO₂ and NO exhaust plumes are relatively short at 30 km/h cruising speed, indicating that a large percentage of remote sensing readings within the measurement duration (0.5 s) are below the sensor detection limit which would distort the derived emission ratio. In addition, the valid measurement region of NO/CO₂ emission ratio is even shorter than the measurable plume and is at the tailpipe height. The effect of vehicle speed (30–90 km/h) on the measurable plume length is insignificant. Under deceleration condition, the length of the valid NO/CO₂ measurement region is shorter than under cruising and acceleration conditions. Side winds from the far-tailpipe direction have a significant effect on remote sensing measurements. The implications of these findings are discussed and possible solutions to improve the accuracy of remote sensing measurement are proposed.
显示更多 [+] 显示较少 [-]Chlorinated organic contaminants in fish from the South China Sea: Assessing risk to Indo-Pacific humpback dolphin 全文
2020
Yu, Xiaoxuan | He, Qingya | Sanganyado, Edmond | Liang, Yan | Bi, Ran | Li, Ping | Liu, Wenhua
Indo-Pacific humpback (Sousa chinensis) dolphins are primarily exposed to chlorinated organic contaminants through the consumption of contaminated fish. We assessed the potential risk of chlorinated organic contaminants to Indo-Pacific humpback dolphins by determining the concentration of 21 organochlorine pesticides (OCPs) and 28 polychlorinated biphenyls (PCBs) in 14 fish species collected from the South China Sea coastal waters. The results of the study showed that bioaccumulation of OCPs and PCBs was influenced by sampling location, fish species, and fish niche. The average ∑DDT (Dichlorodiphenyltrichloroethane) concentration was 3 times higher in benthopelagic fish (488 ng/g) compared to pelagic-neritic fish (155 ng/g) from Jiangmen, whereas an opposite pattern of the lower DDTs concentration in benthopelagic and demersal fish compared to pelagic fish from Zhuhai (p < 0.05). Furthermore, the molecular diagnostic ratios using DDT and its metabolites (DDT/(DDD + DDE) were less than one, suggesting the DDT contamination at Zhuhai and Jiangmen may due to the historical agricultural usage of the lands. The reference dose-based (RfD) risk quotient (RQ) suggested that DDTs are potential risk in Qinzhou, which is in accordance with the high DDTs concentration found in fishes captured in Qinzhou. The RfD risk quotient of PCBs is at potential risk for all sites (RQ > 100), except Xiamen and Qinzhou. A highest average ∑DDT concentration was observed Qinzhou. This study showed that fish consumption might pose a health risk to Indo-Pacific humpback dolphins. However, further studies are required to determine the contribution of fish niche to the overall risk.
显示更多 [+] 显示较少 [-]Developing the environmentally friendly technologies of combustion of gas hydrates. Reducing harmful emissions during combustion 全文
2020
Misyura, S.Y.
In recent years, there has been a sharp increase in interest in the development of environmentally friendly technology for burning methane gas hydrate. In addition to solving energy problems, gas hydrates will help to make significant progress in solving environmental problems. The use of gas hydrate combustion technology is shown to reduce harmful emissions. In this work, experimental studies on the combustion of double hydrate powder of propane-methane have been performed at five different ways of combustion organization. Powder heating was realized using: 1) induction heating; 2) radiation and convective heating; 3) using a hot metal body; 4) combustion without forced gas flow and 5) combustion in the presence of forced and free air convection. Currently there has been neither a comprehensive study of the combustion of double gas hydrates, nor a comparison of the combustion efficiency for different methods; besides, no data on emissions have been obtained. The maximum dissociation rate is implemented with the use of induction heating. Using a gas analyzer the concentration of gases during the gas hydrate combustion has been measured. Comparison of different ways of combustion allows optimizing the combustion efficiency of gas hydrates.
显示更多 [+] 显示较少 [-]