细化搜索
结果 711-720 的 5,098
iTRAQ-based proteomic profiling of Pycnoporus sanguineus in response to co-existed tetrabromobisphenol A (TBBPA) and hexavalent chromium
2018
Feng, Mi | Yin, Hua | Peng, Hui | Lu, Guining | Liu, Zehua | Dang, Zhi
In current study, we investigated the changes of proteome profiles of Pycnoporus sanguineus after a single exposure of Cr(VI), TBBPA and a combined exposure of TBBPA and Cr(VI), with the goal of illuminating the cellular mechanisms involved in the interactions of co-existed TBBPA and Cr(VI) with the cells of P. sanguineus at the protein level. The results revealed that some ATP-binding cassette (ABC) transporters were obviously induced by these pollutants to accelerate the transportation, transformation and detoxification of TBBPA and Cr(VI). Cr(VI) could inhibit the bioremoval of its organic co-pollutants TBBPA through suppressing the expression of several key proteins related to the metabolism of TBBPA by P. sanguineus, including two cytochrome P450s, pentachlorophenol 4-monooxygenase and glutathione S-transferases. Furthermore, Cr(VI) possibly reduced the cell vitality and growth of P. sanguineus by enhancing the expression of imidazole glycerol phosphate synthase as well as by decreasing the abundances of proteins associated with the intracellular metabolic processes, such as the tricarboxylic acid cycle, purine metabolism and glutathione biosynthesis, thereby adversely affecting the biotransformation of TBBPA. Cr(VI) also inhibited the expression of peptidyl prolyl cis/trans isomerases, thus causing the damage of cell membrane integrity. In addition, some important proteins participated in the resistance to Cr(VI) toxicity were observed to up-regulate, including heat shock proteins, 26S proteasome, peroxiredoxins and three critical proteins implicated in S-adenosyl methionine synthesis, which contributed to reducing the hazard of Cr(VI) to P. sanguineus. The results of this study provide novel insights into the physiological responses and molecular mechanism of white rot fungi P. sanguineus to the stress of concomitant TBBPA and Cr(VI).
显示更多 [+] 显示较少 [-]Current and historical concentrations of poly and perfluorinated compounds in sediments of the northern Great Lakes – Superior, Huron, and Michigan
2018
Current and historical concentrations of 22 poly- and perfluorinated compounds (PFASs) in sediment collected from Lake Superior and northern Lake Michigan in 2011 and Lake Huron in 2012 are reported. The sampling was performed in two ways, Ponar grabs of surface sediments for current spatial distribution across the lake and dated cores for multi-decadal temporal trends. Mean concentrations of the sum of PFASs (∑PFASs) were 1.5, 4.6 and 3.1 ng g−1 dry mas (dm) in surface sediments for Lakes Superior, Michigan and Huron, respectively. Of the five Laurentian Lakes, the watersheds of Superior and Huron are the less densely populated by humans, and concentrations observed were typically less and from more diffuse sources, due to lesser urbanization and industrialization. However, some regions of greater concentrations were observed and might indicate more local, point sources. In core samples concentrations ranged from <LOQ to 46.6 ng g−1 dm among the three lakes with concentrations typically increasing with time. Distributions of PFASs within dated cores largely corresponded with increase in use of PFASs, but with physiochemical characteristics also affecting distribution. Perfluoroalkyl sulfonates (PFSAs) with chain lengths >7 that include perfluoro-n-octane sulfonate (PFOS) bind more strongly to sediment, which resulted in more accurate analyses of temporal trends. Shorter-chain PFASs, such as perfluoro-n-butanoic acid which is the primary replacement for C8 PFASs that have been phased out, are more soluble and were identified in some core layers at depths corresponding to pre-production periods. Thus, analyses of temporal trends of these more soluble compounds in cores of sediments were less accurate. Total elemental fluorine (TF) and extractable organic fluorine (EOF) indicated that identified PFASs were not a significant fraction of fluorine containing compounds in sediment (<0.01% in EOF).
显示更多 [+] 显示较少 [-]Optical properties of straw-derived dissolved organic matter and growth inhibition of Microcystis aeruginosa by straw-derived dissolved organic matter via photo-generated hydrogen peroxide
2018
Recent advances in research on algae inhibition by using low-cost straw proposed a possible mechanism that reactive oxygen species (ROS) generated by the solar irradiation of straw-derived dissolved organic matter (DOM) might contribute to cyanobacteria inhibition. However, this process is not clearly understood. Here, DOM from three types of straw (barley, rice, and wheat) and natural organic matter (NOM) isolates were investigated in terms of their photochemical properties and ROS generating abilities. Results demonstrated that the DOM derived from the aeration decomposition of barley straw (A-DOMbs) yielded the best formation efficiencies of hydrogen peroxide (H₂O₂) and hydroxyl radicals (•OH) under solar-simulated irradiation in all organic matter samples. Correlation analysis implies that optical parameters and phenolic hydroxyl group contents can signify ROS generating abilities of different DOM solutions. Bioassay results show that A-DOMbs possesses the highest inhibition performance for M. aeruginosa in all DOM samples, much higher than those of NOM isolates. The addition of catalase greatly relieves the inhibition performance, making the loss of chlorophyll a content decreased from 37.14% to 7.83% in 2 h for A-DOMbs, which implies that for cyanobacteria growth inhibition, photochemically-produced H₂O₂ from SOM is far more important than singlet oxygen (¹O₂), •OH, and even SOM itself. Our results show that H₂O₂ photochemically generated from straw-derived DOM is able to result in rapid inhibition of M. aeruginosa in a relatively short period, furthering the understanding of complicated mechanisms of cyanobacteria inhibition by using low-cost straw in eutrophic waters.
显示更多 [+] 显示较少 [-]Sulfur supply reduces cadmium uptake and translocation in rice grains (Oryza sativa L.) by enhancing iron plaque formation, cadmium chelation and vacuolar sequestration
2018
Cao, Zhen-Zhen | Qin, Mei-Ling | Lin, Xiao-Yan | Zhu, Zhi-Wei | Chen, Ming-Xue
Sulfur (S) fertilizer application in rice (Oryza sativa L.) is crucial in determining rice grain productivity and quality. However, little information is available concerning the effect of S supply on cadmium (Cd) uptake and translocation in rice. In this study, both hydroponic and soil experiments were conducted to investigate the influence of S supply on Cd accumulation in rice under two Cd levels (0 and 50 μM), combined with three S concentrations (0, 2.64 and 5.28 mM). The moderate and excessive S supply (2.64 and 5.28 mM) tended to increase plant growth, root length, root and shoot dry weights of rice seedlings, and significantly decreased Cd concentrations in rice plants and grains in the absence or presence of Cd. The subcellular distribution and chemical forms of Cd in roots and shoots also varied with S supply levels. The decreased Cd uptake and translocation in rice grains could be ascribed to the enhanced formation of iron (Fe) plaque on the root surfaces and increased Cd chelation and vacuolar sequestration in roots, since Fe, Mn concentrations in Fe plaque, glutathione and phytochelatins contents, as well as phytochelatin synthase (OsPCS) and tonoplast heavy metal ATPase (OsHMA3) expressions in roots significantly increased with increased S supply. This work provides more insight into the mechanisms of Cd uptake and translocation in rice, and will be helpful for developing strategies to reduce rice grain Cd through S fertilizer application in Cd-contaminated soil.
显示更多 [+] 显示较少 [-]Thallium in flowering cabbage and lettuce: Potential health risks for local residents of the Pearl River Delta, South China
2018
Yu, Huan-Yun | Chang, Chunying | Li, Fangbai | Wang, Qi | Chen, Manjia | Zhang, Jie
Thallium (Tl), a rare metal, is universally present in the environment with high toxicity and accumulation. Thallium's behavior and fate require further study, especially in the Pearl River Delta (PRD), where severe Tl pollution incidents have occurred. One hundred two pairs of soil and flowering cabbage samples and 91 pairs of soil and lettuce samples were collected from typical farmland protection areas and vegetable bases across the PRD, South China. The contamination levels and spatial distributions of soil and vegetable (flowering cabbages and lettuces) Tl across the PRD were investigated. The relative contributions of soil properties to the bioavailability of Tl in vegetables were evaluated using random forest. Random forest is an accurate learning algorithm and is superior to conventional and correlation-based regression analyses. In addition, the health risks posed by Tl exposure via vegetable intake for residents of the PRD were assessed. The results indicated that rapidly available potassium (K) and total K in soil were the most important factors affecting Tl bioavailability, and the competitive effect of rapidly available K on vegetable Tl uptake was confirmed in this field study. Soil weathering also contributed substantially to Tl accumulation in the vegetables. In contrast, organic matter might not be a major factor affecting the mobility of Tl in most of the lettuce soils. Fe and manganese (Mn) oxides also contributed little to the bioavailability of Tl. A risk assessment suggested that the health risks for Tl exposure through flowering cabbage or lettuce intake were minimal.
显示更多 [+] 显示较少 [-]Water extract of indoor dust induces tight junction disruption in normal human corneal epithelial cells
2018
Xiang, Ping | Jia, Yue | Wang, Kun | Li, Meng-Ying | Qin, Yi-Shu | He, Rui-Wen | Gao, Peng | Liu, Yungen | Liu, Xue | Ma, Lena Q.
In corneal epithelium, tight junctions play a vital role in its barrier function. Human cornea is highly susceptible to damage by dust. Continued daily exposure to dust has been associated with increased risks of corneal injury. Studies demonstrated that water extract of dust induced cytotoxicity in human corneal epithelial cells (HCECs); however, its effects on corneal epithelial barrier function are unknown. In this study, we determined the concentrations of heavy metals in water extracts of dust, with office dust having higher concentrations of heavy metals than housedust, and Cu and Zn being highest among metals for both dust. Changes in barrier function and its associated mechanism after exposing HCECs to water extracts of dust at 48 μg/100 μ L for 7 d were evaluated. Water extracts of both dust caused decrease of TEER value (39–73%), down-regulation of gene expression related to tight junction and mucin (0.2–0.8 fold), and loss of ZO-1 immunoreactivity from cellular borders, with office dust having greater potential than housedust to disrupt corneal epithelial barrier function. Our data implied the importance to reduce heavy metals in dust to reduce their adverse impacts on human eyes.
显示更多 [+] 显示较少 [-]Multi-substrate induced microbial respiration, nitrification potential and enzyme activities in metal-polluted, EDTA-washed soils
2018
Kaurin, Anela | Lestan, Domen
Efficiency and the preservation of soil functions are key requirements for sustainable remediation of contaminated soil. Microbial decomposition and conversion of substrates is a fundamental soil function. Pilot-scale EDTA-based soil washing recycled chelant generated no wastewater and removed 78% of Pb from acidic farmland soil with 860 mg kg⁻¹ Pb and 60% of Pb from calcareous garden soil with 1030 mg kg⁻¹ Pb. Remediation had an insignificant effect on microbial respiration in acidic soil induced by sequential additions of glucose, micro-cellulose, starch and alfa-alfa sprout powder (mimicking litter components, C-cycle). In contrast, remediation of calcareous soil reduced cumulative CO₂ production after glucose (simple) and alfalfa (complex substrate) addition, by up to 40%. Remediation reduced the nitrification rate (denoting the N-cycle) in acidic soil by 30% and halved nitrification in calcareous soil. Remediation in both soils slightly or positively affected dehydrogenase and β-glucosidase activity (associated with C-cycle), and decreased urease activity (N-cycle). Generally, EDTA remediation modestly interfered with substrate utilisation in acidic soil. A more prominent effect of remediation on the functioning of calcareous soil could largely be attributed to the use of a higher EDTA dose (30 vs. 100 mmol kg⁻¹, respectively).
显示更多 [+] 显示较少 [-]Exposure to nanoplastics disturbs the gut microbiome in the soil oligochaete Enchytraeus crypticus
2018
Zhu, Bo-Kai | Fang, Yi-Meng | Zhu, Dong | Christie, Peter | Ke, Xin | Zhu, Yong-Guan
Microplastics are emerging pollutants that have recently aroused considerable concern but most toxicological studies have focused on marine biota, with little investigation of the influence of microplastics on terrestrial ecosystems. Here, we fed the soil oligochaete Enchytraeus crypticus with oatmeal containing 0, 0.025, 0.5, and 10% (dry weight basis) nano-polystyrene (0.05–0.1 μm particle size) to elucidate the impact of microplastics on the growth and gut microbiome of Enchytraeus crypticus. We observed a significant reduction of weight in the animals fed 10% polystyrene and an increase in the reproduction of those fed 0.025%. More importantly, using 16S rRNA amplification and high-throughput sequencing we found a significant shift in the microbiome of those fed 10% microplastics with significant decreases in the relative abundance of the families Rhizobiaceae, Xanthobacteraceae and Isosphaeraceae. These families contain key microbes that contribute to nitrogen cycling and organic matter decomposition.
显示更多 [+] 显示较少 [-]Air pollution-derived PM2.5 impairs mitochondrial function in healthy and chronic obstructive pulmonary diseased human bronchial epithelial cells
2018
Leclercq, B. | Kluza, J. | Antherieu, S. | Sotty, J. | Alleman, L.Y. | Perdrix, E. | Loyens, A. | Coddeville, P. | Lo Guidice, J.-M. | Marchetti, P. | Garçon, G.
In order to clarify whether the mitochondrial dysfunction is closely related to the cell homeostasis maintenance after particulate matter (PM₂.₅) exposure, oxidative, inflammatory, apoptotic and mitochondrial endpoints were carefully studied in human bronchial epithelial BEAS-2B, normal human bronchial epithelial (NHBE) and chronic obstructive pulmonary disease (COPD)-diseased human bronchial epithelial (DHBE) cells acutely or repeatedly exposed to air pollution-derived PM₂.₅. Some modifications of the mitochondrial morphology were observed within all these cell models repeatedly exposed to the highest dose of PM₂.₅. Dose- and exposure-dependent oxidative damages were reported in BEAS-2B, NHBE and particularly COPD-DHBE cells acutely or repeatedly exposed to PM₂.₅. Nuclear factor erythroid 2-p45 related factor 2 (NRF2) gene expression and binding activity, together with the mRNA levels of some NRF2 target genes, were directly related to the number of exposures for the lowest PM₂.₅ dose (i.e., 2 μg/cm²), but, surprisingly, inversely related to the number of exposures for the highest dose (i.e., 10 μg/cm²). There were dose- and exposure-dependent increases of both nuclear factor kappa-B (NF-κB) binding activity and NF-κB target cytokine secretion in BEAS-2B, NHBE and particularly COPD-DHBE cells exposed to PM₂.₅. Mitochondrial ROS production, membrane potential depolarization, oxidative phosphorylation, and ATP production were significantly altered in all the cell models repeatedly exposed to the highest dose of PM₂.₅. Collectively, our results indicate a cytosolic ROS overproduction, inducing oxidative damage and activating oxygen sensitive NRF2 and NF-ₖB signaling pathways for all the cell models acutely or repeatedly exposed to PM₂.₅. However, one of the important highlight of our findings is that the prolonged and repeated exposure in BEAS-2B, NHBE and in particular sensible COPD-DHBE cells further caused an oxidative boost able to partially inactivate the NRF2 signaling pathway and to critically impair mitochondrial redox homeostasis, thereby producing a persistent mitochondrial dysfunction and a lowering cell energy supply.
显示更多 [+] 显示较少 [-]Uranium toxicity to aquatic invertebrates: A laboratory assay
2018
Bergmann, Melissa | Sobral, Olimpia | Pratas, João | Graça, Manuel A.S.
Uranium mining is an environmental concern because of runoff and the potential for toxic effects on the biota. To investigate uranium toxicity to freshwater invertebrates, we conducted a 96-h acute toxicity test to determine lethal concentrations (testing concentrations up to 262 mg L⁻¹) for three stream invertebrates: a shredder caddisfly, Schizopelex festiva Rambur (Trichoptera, Sericostomatidae); a detritivorous isopod, Proasellus sp. (Isopoda, Asellidae); and a scraper gastropod, Theodoxus fluviatilis (Gastropoda, Neritidae). Next, we ran a chronic-toxicity test with the most tolerant species (S. festiva) to assess if uranium concentrations found in some local streams (up to 25 μg L⁻¹) affect feeding, growth and respiration rates. Finally, we investigated whether S. festiva takes up uranium from the water and/or from ingested food. In the acute test, S. festiva survived in all uranium concentrations tested. LC₅₀-96-h for Proasellus sp and T. fluviatilis were 142 mg L⁻¹ and 24 mg L⁻¹, respectively. Specimens of S. festiva exposed to 25 μg L⁻¹ had 47% reduced growth compared with specimens under control conditions (21.5 ± 2.9 vs. 40.6 ± 4.9 μg of mass increase animal⁻¹·day⁻¹). Respiration rates (0.40 ± 0.03 μg O₂·h⁻¹·mg animal⁻¹) and consumption rates (0.54 ± 0.05 μg μg animal⁻¹·day⁻¹; means ± SE) did not differ between treatments. Under laboratory conditions S. festiva accumulated uranium from both the water and the ingested food. Our results indicate that uranium can be less toxic than other metals or metalloids produced by mining activities. However, even at the low concentrations observed in streams affected by abandoned mines, uranium can impair physiological processes, is bioaccumulated, and is potentially transferred through food webs.
显示更多 [+] 显示较少 [-]