细化搜索
结果 731-740 的 4,935
Ingestion of microplastics by nematodes depends on feeding strategy and buccal cavity size 全文
2019
Fueser, Hendrik | Mueller, Marie-Theres | Weiss, Linette | Höss, Sebastian | Traunspurger, W. (Walter)
Microplastics are hardly biodegradable and thus accumulate rather than decompose in the environment. Due to sedimentation processes, meiobenthic fauna is exposed to microplastics. Within the meiofauna, nematodes are a very abundant taxon and occupy an important position in benthic food webs by connecting lower and higher trophic levels. However, the key determinants of the uptake of microplastics by freshwater nematodes are still unknown. To investigate the bioaccessibility of microplastics for nematodes, we performed single- and multi-species ingestion experiments in which the ability of seven nematode species (six bacterial and one fungal feeder), diverse in their buccal cavity morphology (1.3–10.5 μm), to ingest fluorescence-labelled polystyrene (PS) beads along with their natural diet was examined. Applied beads sizes (0.5, 1.0, 3.0 and 6.0 μm), exposure time (4, 24 and 72 h) and concentration (3 × 10⁶ PS beads ml⁻¹ and 10⁷ PS beads ml⁻¹) were varied. Ingested beads were localized and quantified via fluorescence microscopy in the nematodes. In contrast to fungal-feeding nematode species with a stylet, bacterial-feeding species ingested 0.5- and 1.0-μm PS beads with up to 249 and 255 beads after 24 h, respectively. Microplastics ≥0.5 μm could only be ingested and transported into the gastrointestinal tract, if the buccal cavities were considerably (>1.3 times) larger than the beads. At concentrations of 10⁷ PS beads ml⁻¹ ingestion rates were influenced by exposure time and PS bead concentration. In case of a known microplastic size distribution in the environment, predictions on the potential ingestion for nematode communities can be made based on the feeding type composition and the size of their buccal cavities.
显示更多 [+] 显示较少 [-]Early life exposure to triphenyl phosphate: Effects on thyroid function, growth, and resting metabolic rate of Japanese quail (Coturnix japonica) chicks 全文
2019
Guigueno, M.F. | Head, J.A. | Letcher, R.J. | Karouna-Renier, N. | Peters, L. | Hanas, A.M. | Fernie, K.J.
Triphenyl phosphate (TPHP; CAS # 115-86-6), a commonly used plasticizer and flame retardant, has been reported in wild birds and identified as a potential high-risk chemical. We exposed Japanese quail (Coturnix japonica) by in ovo injection, and once hatched, orally each day for 5 days to safflower oil (controls) or TPHP dissolved in vehicle at low (5 ng TPHP/g), mid (50 ng TPHP/g), or high (100 ng TPHP/g) nominal TPHP doses. The low TPHP dose reflected concentrations in wild bird eggs, with mid and high doses 10x and 20x greater to reflect potential increases in environmental TPHP concentrations in the future. Despite no effects on mRNA expression in thyroid-related genes, TPHP exposure enhanced thyroid gland structure in high TPHP males, but in females, suppressed thyroid gland structure and activity (all TPHP females), and circulating free triiodothyronine (high TPHP females only). Consistent with thyroidal changes, and compared to controls, mid and high TPHP chicks experienced significantly reduced resting metabolic rate (≤13%) and growth (≤53%); mid TPHP males and high TPHP females were significantly smaller. The observed thyroidal effects and suppressed growth and metabolic rate of the quail chicks suggest that TPHP may adversely affect the health of wild birds.
显示更多 [+] 显示较少 [-]Genomic mutations after multigenerational exposure of Caenorhabditis elegans to pristine and sulfidized silver nanoparticles 全文
2019
Wamucho, Anye | Unrine, Jason M. | Kieran, Troy J. | Glenn, Travis C. | Schultz, Carolin L. | Farman, Mark | Svendsen, Claus | Spurgeon, David J. | Tsyusko, Olga V.
Our previous study showed heritable reproductive toxicity in the nematode Caenorhabditis elegans after multigenerational exposure to AgNO₃ and silver nanoparticles (Ag-NPs). The aim of this study was to determine whether such inheritable effects are correlated with induced germline mutations in C. elegans. Individual C. elegans lineages were exposed for 10 generations to equitoxic concentrations at EC₃₀ of AgNO₃, Ag-NPs, and sulfidized Ag-NPs (sAg-NPs), a predominant environmentally transformed product of pristine Ag-NPs. The mutations were detected via whole genome DNA sequencing approach by comparing F₀ and F₁₀ generations. An increase in the total number of variants, though not statistically significant, was observed for all Ag treatments and the variants were mainly contributed by single nucleotide polymorphisms (SNPs). This potentially contributed towards reproductive as well as growth toxicity shown previously after ten generations of exposure in every Ag treatment. However, despite Ag-NPs and AgNO₃ inducing stronger reproductive toxicity than sAg-NPs, exposure to sAg-NPs resulted in higher mutation accumulation with significant increase in the number of transversions. Thus our results suggest that other mechanisms of inheritance, such as epigenetics, may be at play in Ag-NP- and AgNO₃-induced multigenerational and transgenerational reproductive toxicity.
显示更多 [+] 显示较少 [-]Differential lethal and sublethal effects in embryonic zebrafish exposed to different sizes of silver nanoparticles 全文
2019
Liu, Xiaobo | Dumitrescu, Eduard | Kumar, Ajeet | Austin, Daniel | Goia, Dan | Wallace, Kenneth N. | Andreescu, Silvana
Various parameters can influence the toxic response to silver nanoparticles (Ag NPs), including the size and surface properties, as well as the exposure environment and the biological site of action. Herein, we assess the intestinal toxicity of three different sizes (10, 40, and 100 nm) of Ag NPs in embryonic zebrafish, and describe the relationship between the properties and behavior of Ag NPs in the exposure medium, and induction of lethal and sublethal effects. We find that the composition of the medium and the size contribute to differential NPs agglomeration, release of Ag ions, and subsequent effects during exposure. The exposure medium causes dramatic reduction in silver dissolution due to the presence of salts and divalent cations, which limits the lethal potential of silver ions. Lethality is observed primarily for embryos exposed to medium sized Ag NPs (40 nm), but not to the supernatant originated from particles, which suggests that the exposure to particulate silver is the main cause of mortality. On the other hand, the exposure to 10 nm and 100 nm NPs, as well as Ag ions, only causes sublethal developmental defects in skeletal muscles and intestine, and induces a nitric oxide imbalance.
显示更多 [+] 显示较少 [-]Response of soil microbes after direct contact with pyraclostrobin in fluvo-aquic soil 全文
2019
Zhang, Cheng | Zhou, Tongtong | Zhu, Lusheng | Juhasz, Albert | Du, Zhongkun | Li, Bing | Wang, Jun | Wang, Jinhua | Sun, Yan'an
Agricultural chemicals affect the daily life of food production. However, the abuse of pesticides led to the damage to the environment. Pyraclostrobin (PYR) is commonly used strobilurin fungicide which inhibits fungal respiration through mitochondrial cytochrome-b and c1 inhibition. There is increasing concerns that PYR may adversely impact the environment. Although impacts on ecological receptors have been detailed, little information is available regarding the toxicological impact of PYR on soil microbial community dynamics and functioning. Understanding the potential impact on soil microbial populations is important. The activity of enzymes (urease, dehydrogenase, and β-glucosidase) and diversity of microbial community structure using high-throughput 16S rRNA sequencing were evaluated at different soil-PYR concentrations (0.1, 1.0, and 2.5 mg/kg) over a 48 day exposure period. Urease activity remained stable in general. Pyraclostrobin inhibited dehydrogenase activity during the exposure period. The β-glucosidase activity was inhibited on day 28 and induced on day 48 at 1.0 and 2.5 mg/kg. The genera Gp6, Exiguobacterium, Gp4, and Gemmatimonas were both the dominant genera and significantly changed genera. Pyraclostrobin had different level of influence on soil microbes containg their enzyme activity and community structure. The purpose of the current study was to examine the impact of PYR addition on soil enzymes as an indicator of soil health and to have complementary data on the impact of microbial populations. Furthermore, the study may also be the guide for further rational pesticide selection.
显示更多 [+] 显示较少 [-]The role of turbulence in internal phosphorus release: Turbulence intensity matters 全文
2019
Li, Hong | Yang, Guofeng | Ma, Jianrong | Wei, Yanyan | Kang, Li | He, Yixin | He, Qiang
Hydrodynamic fluctuations can trigger sediment suspension concomitantly with internal phosphorus release, while the interactive effect of turbulence mixing and sediment suspension on the regulation of phosphorus dynamics is in need of deep understanding. This study addressed the changes in total phosphorus (TP), phosphate (PO₄³⁻-P) and suspended sediment (SS) in the overlying water, and measured the profile of dissolved oxygen (DO), Fe(II) and soluble reactive phosphorus (SRP) across the sediment-water interface in the simulated environmental turbulence scenario, For a turbulence intensity (ε) of 3.6 × 10⁻³ m²/s³, the SRP flux increased hence PO₄³⁻-P showed a 36.36% increase relative to its initial level. Although ε of 1.3 × 10⁻² m²/s³ benefited the delivery of oxygen from the bulk aqueous phase to the upper sediment which can trigger the formation of Fe oxides and hydroxides, the turbulence-induced phosphorus diffusion from the sediment exceeded its inactivation and resulted in a large SRP flux. However, a protion of the released PO₄³⁻-P can be immobilized through SS adsorption and biotic (likely cyanobacteria) assimilation. Higher turbulence intensities (ε of 3.3 × 10⁻² and 7.4 × 10⁻² m²/s³) led to an approximately 40-fold increase in TP concentration and a significant increase in sediment suspension, which contributed to the immobilization of a majority of the phosphate through adsorption; thus, the PO₄³⁻-P concentrations in the overlying water displayed 47.75% and 41.67% decline, respectively. This study also confirmed the sequential phosphorus buffer mechanisms associated with increasing turbulence intensities. With an ε of 3.6 × 10⁻³ m²/s³, bounding to Fe ion had a significant impact on phosphorus inactivation but with an ε of 7.4 × 10⁻² m²/s³, the main immobilization mechanism is switched to phosphorus adsorption from the large quantity of suspended sediment.
显示更多 [+] 显示较少 [-]Anticipating the impact of pitfalls in kinetic biodegradation parameter estimation from substrate depletion curves of organic pollutants 全文
2019
Escuder-Gilabert, Laura | Martín-Biosca, Yolanda | Sagrado, Salvador | Medina-Hernández, María José
Accurate and reliable estimation of kinetic parameters of pollutant biodegradation processes is essential for environmental and health risk assessment. Common biodegradation models proposed in the literature, such as the nonlinear Monod equation and its simplified versions (e.g. Michaelis-Menten-like and first-order equations), are problematic in terms of accuracy of kinetic parameters due to the parameter correlation. However, a comparison between these models in terms of accuracy and reliability, related to data imprecision, has not been performed in the literature. This task is necessary, mainly because the model selection cannot be straightforward, as shown in this work. To facilitate the comparison, novel statistics summarising the accuracy and reliability of estimations are introduced. The main objective is to establish relationships between these statistics (trough new diagnostic indicators) to limit the probability of pitfalls or to avoid the negative impact of an improper model selection. Such anticipation is an imperative need in the biodegradation modelling framework and, to the best of our knowledge, it has never been performed. In order to account for accuracy, simulated data in realistic conditions are used to highlight the magnitude of pitfalls related to the model selection for estimation of the main kinetic parameters (Kₛ, μₘ and/or Vₘ). Four scenarios related to model selection are compared for the first time and, diagnostic indicators able to anticipate relevant aspects related to accuracy and reliability are introduced. Moreover, first evidences of the impact of measurement errors in other intrinsic Monod parameters (the initial biomass concentration and the microbial yield coefficient, Y), as well as the impact of the simultaneous μₘ, Kₛ and Y estimation, on the accuracy and reliability of the estimations are reported. Despite the pitfalls shown, specific applicability of even unreliable models is highlighted, and suggestions for environmental and health risk modellers are provided accordingly.
显示更多 [+] 显示较少 [-]Exposure to ultrafine particulate matter induces NF-κβ mediated epigenetic modifications 全文
2019
Bhargava, Arpit | Shukla, Anushi | Bunkar, Neha | Shandilya, Ruchita | Lodhi, Lalit | Kumari, Roshani | Gupta, Pushpendra Kumar | Rahman, Akhlaqur | Chaudhury, Koel | Tiwari, Rajnarayan | Goryacheva, Irina Yu. | Mishra, Pradyumna Kumar
Exposure to ultrafine particulate matter (PM0.1) is positively associated with the etiology of different acute and chronic disorders; however, the in-depth biological imprints that link these submicron particles with the disturbances in the epigenomic machinery are not well defined. Earlier, we showed that exposure to these particles causes significant disturbances in the mitochondrial machinery and triggers PI-3-kinase mediated DNA damage responses. In the present study, we aimed to further understand the epigenomic insights of the ultrafine PM exposure. The higher levels of intracellular reactive oxygen species and depleted Nrf-2 in ultrafine PM exposed cells reconfirmed its potential to induce oxidative stress. Importantly, the observed increase in the levels of NF-κβ and associated cytokines among exposed cells suggested the activation of NF-κβ mediated inflammatory loop which potentially serves as a platform for initiating epigenetic insinuations. This fact was strongly supported by the altered miRNA expression profile of the ultrafine PM exposed cells. These NF-κβ induced miRNA alterations were also found to be associated with other epigenetic targets as the exposed cells showed higher expression levels of DNA methyltransferases which positively corresponded with the global changes in DNA methylation levels. Upon further analysis, significant alterations in histone code were also reported in ultrafine PM exposed cells. Conclusively our results suggested that NF-κβ acts as an inflammatory switch that possesses the potential to induce genome-wide epigenetic modification upon ultrafine PM exposure.
显示更多 [+] 显示较少 [-]Occurrence of organic phosphates in particulate matter of the vehicle exhausts and outdoor environment – A case study 全文
2019
Fabiańska, Monika J. | Kozielska, Barbara | Konieczyński, Jan | Bielaczyc, Piotr
The occurrence and concentrations of a wide range of organic phosphates (OPEs) in vehicle's exhaust (VPM), ambient air particulate matter (APM), and soil of various urban environments were researched. VPM comes from passenger cars, commercial vehicles, marine and bus engines emitted in New European Driving Cycle tests whereas APM was sampled in several sites of the Upper Silesia region (Poland). APM and VPM collected on filters and soil from the same locations as APM sampling sites were extracted with dichloromethane and extracts analyzed by gas chromatography-mass spectrometry. The OPEs found include aryl phosphates such as triphenyl phosphate (TPhP) and tricresyl phosphate (TCP), alkyl phosphates - triethyl phosphate (TEP), tripropyl phosphate (TPP), tributyl phosphate (TBP) and tri(butoxyethyl)phosphate (TBEP), and alkylchlorinated phosphates including tris-(2-chloroisopropyl) phosphate (TCiPP) and tris(2-chloroethyl) phosphate (TCEP). Occurrence and concentrations of these compounds in the PM investigated are highly variable. It was found that total concentrations in APM are directly related to traffic density in particular sites of the urban environment and a style of a vehicle driving. The highest emission of OPEs was found at a crossroad and city center sites where traffic is the densest and vehicles stops and starts are frequent. Village and residential areas were less exposed to OPEs emission. Since OPEs concentrations show exponential correlations to each other also human exposure to these compounds increases exponentially with increasing traffic density. High TEP and TBP level is tentatively proposed as an indicator of emission from petrol-fueled cars. Concentrations of OPEs in some soil are related to their emission to the air and resistance to degradation of a particular compound since only the most resistant TCiPP and TPhP were identified in soil extracts.
显示更多 [+] 显示较少 [-]Effects of environmental pollution on the rDNAomics of Amazonian fish 全文
2019
Araújo da Silva, Francijara | Feldberg, Eliana | Moura Carvalho, Natália Dayane | Hernández Rangel, Sandra Marcela | Schneider, Carlos Henrique | Carvalho-Zilse, Gislene Almeida | Fonsêca da Silva, Victor | Gross, Maria Claudia
Pollution is a growing environmental problem throughout the world, and the impact of human activities on biodiversity and the genetic variability of natural populations is increasingly preoccupying, given that adaptive processes depend on this variability, in particular that found in the repetitive DNA. In the present study, the mitochondrial DNA (COI) and the distribution of repetitive DNA sequences (18S and 5S rDNA) in the fish genome were analysed in fish populations inhabiting both polluted and unpolluted waters in the northern Amazon basin. The results indicate highly complex ribosomal sequences in the fish genome from the polluted environment because these sequences are involved primarily in the maintenance of genome integrity, mediated by a systematic increase in the number of copies of the ribosomal DNA in response to changes in environmental conditions.
显示更多 [+] 显示较少 [-]