细化搜索
结果 731-740 的 7,292
Microplastisphere may induce the enrichment of antibiotic resistance genes on microplastics in aquatic environments: A review 全文
2022
Yu, Xue | Zhang, Ying | Tan, Lu | Han, Chenglong | Li, Haixiao | Zhai, Lifang | Ma, Weiqi | Li, Chengtao | Lu, Xueqiang
Microplastics have been proven to be hotspots of bacterial pathogens and antibiotic resistance genes (ARGs). The enrichment of ARGs in microplastisphere, the specific niche for diverse microbial communities attached to the surface of microplastic, has attracted worldwide attention. By collecting 477 pairs of ARG abundance data belonging to 26 ARG types, based on the standardized mean difference (SMD) under the random effect model, we have performed the first meta-analysis of the ARG enrichment on microplastics in aquatic environments in order to quantitatively elucidate the enrichment effect, with comparison of non-microplastic materials. It was found that ARGs enriched on the microplastics were more abundant than that on the inorganic substrates (SMD = 0.26) and natural water environments (SMD = 0.10), but lower abundant than that on the natural organic substrates (SMD = −0.52). Furthermore, microplastics in freshwater tended to have a higher degree of ARG enrichment than those in saline water and sewage. The biofilm formation stage, structure, and component of microplastisphere may play a significant role in the enrichment of ARGs.
显示更多 [+] 显示较少 [-]Integrated assessment of the impact of land use types on soil pollution by potentially toxic elements and the associated ecological and human health risk 全文
2022
Wang, Xueping | Wang, Lingqing | Zhang, Qian | Liang, Tao | Li, Jing | Bruun Hansen, Hans Chr | Shaheen, Sabry M. | Antoniadis, Vasileios | Bolan, Nanthi | Rinklebe, Jörg
The impact of land use type on the content of potentially toxic elements (PTEs) in the soils of the Qinghai-Tibet Plateau (QTP) and the associated ecological and human health risks has drawn great attention. Consequently, in this study, top- and subsurface soil samples were collected from areas with four different land uses (i.e., cropland, forest, grassland, and developed area) and the total contents of Cr, Cd, Cu, Pb and Zn were determined. Geostatistical analysis, self-organizing map (SOM), and positive matrix factorization (PMF), ecological risk assessment (ERA) and human health risk assessment (HRA) were applied and used to classify and identify the contamination sources and assess the potential risk. Partial least squares path modeling (PLS-PM) was applied to clarify the relationship of land use with PTE contents and risk. The PTE contents in all topsoil samples surpassed the respective background concentrations of China and corresponding subsurface concentrations. However, the ecological risk of all soil samples remained at a moderate or considerable level across the four land use types. Developed area and cropland showed a higher ecological risk than the other two land use types. Industrial discharges (32.8%), agricultural inputs (22.6%), natural sources (23.7%), and traffic emissions (20.9%) were the primary PTE sources in the tested soils, which indicate that anthropogenic activities have significantly affected soil PTE contents to a greater extent than other sources. Industrial discharge was the most prominent source of non-carcinogenic health risk, contributing 37.7% for adults and 35.2% for children of the total risk. The results of PLS-PM revealed that land use change associated with intensive human activities such as industrial activities and agricultural practices distinctly affected the PTE contents in soils of the Qinghai-Tibet Plateau.
显示更多 [+] 显示较少 [-]Mechanism of biochar functional groups in the catalytic reduction of tetrachloroethylene by sulfides 全文
2022
Yang, Yadong | Piao, Yunxian | Wang, Ruofan | Su, Yaoming | Qiu, Jinrong | Liu, Na
In recent years, biochar has become of considerable interest for environmental applications, it can be used as a catalyst for sulfides reduction of perchloroethylene, but the crucial role of biochar properties played in catalyzing dechlorination remained ambiguous investigation. To pinpoint the critical functional groups, the modified biochars were respectively produced by HNO₃, KOH and H₂O₂ with similar dimensional structures but different functional groups. Combined with the adsorption and catalytic results of different biochars, the acid-modified biochar had the best catalytic performance (99.9% removal) due to the outstanding specific surface area and ample functional groups. According to characterization and DFT results, carboxyl and pyridine nitrogen exhibited a positive correlation with the catalytic rate, indicating that their contribution to catalytic performance. Customizing biochar with specific functional groups removed depth demonstrated that the carboxyl was essential component. Further, alkaline condition was conducive to catalytic reduction, while tetrachloroethylene cannot be reduced under acidic conditions, because HS⁻ and S²⁻ mainly existed in alkaline environment and the sulfur-containing nucleophilic structure formed with biochar was more stable under this condition. Overall, this study opens new perspectives for in situ remediation by biochar in chlorinated olefin polluted anoxic environment and promotes our insight of modifying for biochar catalyst design.
显示更多 [+] 显示较少 [-]Interaction and spatio-taxonomic patterns of the soil microbiome around oil production wells impacted by petroleum hydrocarbons 全文
2022
Geng, Pengxue | Ma, Anzhou | Wei, Xiaoxia | Chen, Xianke | Yin, Jun | Hu, Futang | Zhuang, Xuliang | Song, Maoyong | Zhuang, Guoqiang
Numerous onshore oil production wells currently exist, and the petroleum hydrocarbon contamination of the surrounding soil caused by oil production wells is not well understood. Moreover, the impact of the distribution of the total petroleum hydrocarbons (TPH) in the soil on the microbiota requires further investigation. Accordingly, in this study, the distribution of petroleum hydrocarbons in the soils around oil production wells was investigated, and their alteration of the microbiota was revealed. The results revealed that in the horizontal direction, the heavily TPH-contaminated soils were mainly distributed within a circle with a radius of 200 cm centered on the oil production well; and in the vertical direction, the heavily TPH-contaminated soils were distributed within the 0–50 cm soil layer. A significant positive correlation was found between the microbial abundance and the TPH concentration in the soil with relatively low total carbon contents. Heavy TPH contamination (TPH concentration of >3000 mg/kg) significantly reduced the microbial diversity and altered the microbiota compared with the light TPH contamination (TPH concentration of around 1000 mg/kg). In the heavily TPH-contaminated soils, the relative abundances of the Proteobacteria and Bacteroides increased significantly; the network complexity among the soil microorganisms decreased; and the co-occurrence patterns were altered. In summary, the results of this study have reference value in the remediation of soils around oil production wells and provide guidance for the construction of microbial remediation systems for petroleum contamination.
显示更多 [+] 显示较少 [-]The geochemical and mineralogical controls on the release characteristics of potentially toxic elements from lead/zinc (Pb/Zn) mine tailings 全文
2022
Chen, Tao | Wen, Xiao–Cui | Zhang, Li–Juan | Tu, Shu–Cheng | Zhang, Jun–Hao | Sun, Ruo–Nan | Yan, Bo
Large quantities of lead/zinc (Pb/Zn) mine tailings were deposited at tailings impoundments without proper management, which have posed considerable risks to the local ecosystem and residents in mining areas worldwide. Therefore, the geochemical behaviors of potentially toxic elements (PTEs) in tailings were in–depth investigated in this study by a coupled use of batch kinetic tests, statistical analysis and mineralogical characterization. The results indicated that among these studied PTEs, Cd concentration fluctuated within a wide range of 0.83–6.91 mg/kg, and showed the highest spatial heterogeneity. The mean Cd concentrations generally increased with depth. Cd were mainly partitioned in the exchangeable and carbonate fractions. The release potential of PTEs from tailings was ranged as: Cd > Mn > Zn > Pb > As, Cd > Pb > Zn > Mn > As and Cd > Pb > Mn > Zn > As, respectively, under the assumed environmental scenarios, i.e. acid rain, vegetation restoration, human gastrointestinal digestion. The results from mineralogical characterization indicated that quartz, sericite, calcite and pyrite were typical minerals, cumulatively accounting for over 80% of the tailings. Sulfides (arsenopyrite, galena, and sphalerite), carbonates (calcite, dolomite, cerussite and kutnahorite), oxides (limonite) were identified as the most relevant PTEs–bearing phases, which significantly contributed to PTEs release from tailings. A combined result of statistical, geochemical and mineralogical approaches would be provided valuable information for the alteration characteristics and contaminant release of Pb/Zn mine tailings.
显示更多 [+] 显示较少 [-]Comprehensive investigation of persistent and mobile chemicals and per- and polyfluoroalkyl substances in urine of flemish adolescents using a suspect screening approach 全文
2022
Kim, Da-Hye | Jeong, Yunsun | Belova, Lidia | Roggeman, Maarten | Fernández, Sandra F. | Poma, Giulia | Rémy, Sylvie | Verheyen, Veerle J. | Schoeters, Greet | van Nuijs, Alexander L.N. | Covaci, Adrian
Persistent and mobile chemicals (PMs) and per- and polyfluoroalkyl substances (PFAS) are groups of chemicals that have received recent global attention due to their potential health effects on the environment and humans. In this study, exposure to a broad range of PMs and PFAS was investigated in Flemish adolescents’ urine samples (n = 83) using a suspect screening approach. For this purpose, three sample preparation methods were evaluated, and a basic liquid-liquid extraction was optimized for urine analysis based on the extraction efficiency of PMs (53–80%) and PFAS (>70%). In total, 9 PMs were identified in urine samples at confidence levels (CL) 1–3 and, among them, acetaminophen, 4-aminophenol, 2,2,6,6-tetramethyl-4-piperidone, trifluoroacetic acid (TFAA), sulisobenzone, ethyl sulfate, and 1,2-benzisothiazol-3(2H)-one 1,1-dioxide were confirmed at CL 1 and 2. In addition, the detection and identification of 2,2,6,6-tetramethyl-4-piperidone, 4-aminophenol, TFAA, and m-(2,3-epoxypropoxy)-N,N-bis(2,3-epoxypropyl) aniline (CL 3), has been reported for the first time in human urine in this study. For PFAS, only 2 compounds were identified at CL 4, implying that urine is not a suitable matrix for suspect screening of such compounds. A significant difference between sexes was observed in the detection rate of identified PMs, in particular for acetaminophen, 4-aminophenol, and sulisobenzone. The findings of this study can be used in future human biomonitoring programs, such as by including the newly identified compounds in quantitative methods or monitoring in other human matrices (e.g., serum).
显示更多 [+] 显示较少 [-]The need for environmental regulation of tires: Challenges and recommendations 全文
2022
Trudsø, Louise Lynn | Nielsen, Maria Bille | Hansen, Steffen Foss | Syberg, Kristian | Kampmann, Kristoffer | Khan, Farhan R. | Palmqvist, Annemette
The interest in tire wear particles (TWPs), generated from abrasion of tires, have gained traction over the past few years, both in regards to quantifying particulate emissions, leaching of different compounds, toxicity, and analytical methods. The life of a tire, from cradle to end-of-life, crosses over different scenarios during its lifetime and transcends environmental compartments and legislative areas, underlining the need for a collective approach. Sustainability for a tire encompasses the use of raw materials, recycling of raw materials, circular economy and material sourcing. The tire industry is currently making significant efforts towards a greener and more sustainable production considering reduction of CO₂-emissions, recycling, material sources and implementing the use of biomass from plants rather than oil-derived alternatives. In this paper, we aim to analyze and discuss the need for environmental regulation of tires in order to provide a series of targeted recommendations for future legislation. Our study shows that the numerous regulations related to tires focus on chemicals, manufacturing, raw materials, use of tires on roads, waste handling, safety and polycyclic aromatic hydrocarbons (PAHs) in different life cycle stages of a tire. However, none directly addresses the contribution of TWPs to the environment. Despite the overall good intentions of the existing regulations, there is a lack of focus on the compounds that partition from the tire and disperse in the environment, their mixture effects, and the transformative products from the parent compounds in the environment. Therefore, a renewed focus is needed on risk assessment of complex mixtures like TWPs. Thus, transparency in regard to use of chemicals in TWP, mixtures, minimization of emissions, and capture of particulate pollution should be a priority.
显示更多 [+] 显示较少 [-]Severe cyanobacteria accumulation potentially induces methylotrophic methane producing pathway in eutrophic lakes 全文
2022
Zhou, Chuanqiao | Peng, Yu | Yu, Miaotong | Deng, Yang | Chen, Li | Zhang, Lanqing | Xu, Xiaoguang | Zhang, Siyuan | Yan, Yan | Wang, Guoxiang
Although cyanobacteria blooms lead to an increase in methane (CH₄) emissions in eutrophic lakes have been intensively studied, the methane production pathways and driving mechanisms of the associated CH₄ emissions are still unclear. In this study, the hypereutrophic Lake Taihu, which has extreme cyanobacteria accumulation, was selected to test hypothesis of a potential methylotrophic CH₄ production pathway. Field observation displayed that the CH₄ emission flux from the area with cyanobacteria accumulation was 867.01 μg m⁻²·min⁻¹, much higher than the flux of 3.44 μg m⁻²·min⁻¹ in the non-cyanobacteria accumulation area. The corresponding abundance of methane-producing archaea (MPA) in the cyanobacteria-concentrated area was 77.33% higher than that in the non-concentrated area via RT-qPCR technologies. Synchronously, sediments from these areas were incubated in anaerobic bottles, and results exhibited the high CH₄ emission potential of the cyanobacteria concentrated area versus the non-concentrated area (1199.26 vs. 205.76 μmol/L) and more active biological processes (CO₂ emission, 2072.8 vs. −714.62 μmol/L). We also found evidence for the methylotrophic methane producing pathway, which contributed to the high CH₄ emission flux from the cyanobacteria accumulation area. Firstly, cyanobacteria decomposition provided the prerequisite of abundant methyl thioether substances, including DMS, DMDS, and DMTS. Results showed that the content of methyl thioethers increased with the biomass of cyanobacteria, and the released DMS, DMDS, and DMTS was up to 96.35, 3.22 and 13.61 μg/L, respectively, in the highly concentrated 25000 g/cm³ cyanobacteria treatment. Then, cyanobacteria decomposition created anaerobic microenvironments (DO 0.06 mg/L and Eh −304.8Mv) for methylotrophic methane production. Lastly, the relative abundance of Methanosarcinales was increased from 7.67% at the initial stage to 36.02% at the final stage within a sediment treatment with 10 mmol/L N(CH₃)₃. Quantitatively, the proportion of the methylotrophic methane production pathway was as high as 32.58%. This finding is crucial for accurately evaluating the methane emission flux, and evaluating future management strategies of eutrophic lakes.
显示更多 [+] 显示较少 [-]Stomata facilitate foliar sorption of silver nanoparticles by Arabidopsis thaliana 全文
2022
He, Jianzhou | Zhang, Li | He, Sheng Yang | Ryser, Elliot T. | Li, Hui | Zhang, Wei
Application of nanopesticides may substantially increase surface attachment and internalization of engineered nanoparticles (ENPs) in food crops. This study investigated the role of stomata in the internalization of silver nanoparticles (Ag NPs) using abscisic acid (ABA)-responsive ecotypes (Ler and Col-7) and ABA-insensitive mutants (ost1-2 and scord7) of Arabidopsis thaliana in batch sorption experiments, in combination with microscopic visualization. Compared with those of the ABA-free control, stomatal apertures were significantly smaller for the Ler and Col-7 ecotypes (p ˂ 0.05) but remained unchanged for the ost1-2 and scord7 mutants, after exposure to 10 μM ABA for 1 h. Generally Ag NP sorption to the leaves of the Ler and Col-7 ecotypes treated with 10 μM ABA was lower than that in the ABA-free control, mainly due to ABA-induced stomatal closure. The difference in Ag NP sorption with and without ABA was less pronounced for Col-7 than for Ler, suggesting different sorption behaviors between these two ecotypes. In contrast, there was no significant difference in foliar sorption of Ag NPs by the ost1-2 and scord7 mutants with and without ABA treatment. Ag NPs were widely attached to the Arabidopsis leaf surface, and found at cell membrane, cytoplasm, and plasmodesmata, as revealed by scanning electron microscopy and transmission electron microscopy, respectively. These results highlight the important role of stomata in the internationalization of ENPs in plants and may have broad implications in foliar application of nanopesticides and minimizing contamination of food crops by ENPs.
显示更多 [+] 显示较少 [-]How can environmental conditions influence dicofol genotoxicity on the edible Asiatic clam, Meretrix meretrix? 全文
2022
Ivorra, Lucia | Cruzeiro, Catarina | Ramos, Alice | Tagulao, Karen | Cardoso, Patricia G.
Genotoxic effects of dicofol on the edible clam Meretrix meretrix were investigated through a mesocosm experiment. Individuals of M. meretrix, were exposed to environmental concentration (D1 = 50 ng/L) and supra-environmental concentration (D2 = 500 ng/L) of dicofol for 15 days, followed by the same depuration period. DNA damage (i.e., strand breaks and alkali-labile sites) was evaluated at day 1, 7 and 15, during uptake and depuration, using Comet assay (alkaline version) and nuclear abnormalities (NAs) as genotoxicity biomarkers. The protective effects of dicofol against DNA damage induced by ex vivo hydrogen peroxide (H₂O₂) exposure were also assessed. Comet assay results revealed no significant DNA damages under dicofol exposure, indicating 1) apparent lack of genotoxicity of dicofol to the tested conditions and/or 2) resistance of the animals due to optimal adaptation to stress conditions. Moreover, ex vivo H₂O₂ exposure showed an increase in the DNA damage in all the treatments without significant differences between them. However, considering only the DNA damage induced by H₂O₂ during uptake phase, D1 animals had significantly lower DNA damage than those from other treatments, revealing higher protection against a second stressor. NAs data showed a decrease in the % of cells with polymorphic, kidney shape, notched or lobbed nucleus, along the experiment. The combination of these results supports the idea that the clams used in the experiment were probably collected from a stressful environment (in this case Pearl River Delta region) which could have triggered some degree of adaptation to those environmental conditions, explaining the lack of DNA damages and highlighting the importance of organisms’ origin and the conditions that they were exposed during their lives.
显示更多 [+] 显示较少 [-]