细化搜索
结果 741-750 的 1,546
Water Quality Characterization in the Northern Florida Everglades 全文
2012
Entry, James A.
The Loxahatchee National Wildlife Refuge (Refuge) developed as a system with waters low in nutrients. Today, the Refuge wetlands are impacted by inflows containing elevated nutrient concentrations originating from agricultural sources flowing into canals surrounding the west side and from urban and horticultural areas flowing into canals surrounding the eastern side of the Refuge. We analyzed water quality sampled at 40 sites divided into eastern and western areas and four zones in the Refuge. We defined four zones as the canals surrounding the Refuge marsh, the perimeter zone, the transition zone, and the interior zone. The canal receiving agricultural inflows had greater alkalinity and conductivity (SpC), Si and SO4 but lower turbidity and total suspended solids than the canal receiving urban and horticultural inflows. Alkalinity, total dissolved solids (TDS), SpC, Ca, Cl, and SO4 concentrations were greater in the perimeter than in transition and interior zones. Alkalinity and SpC values and SO4 concentrations were greater in the transition than in interior zone. Alkalinity, SpC, and TDS values and Ca, SO4, and Cl concentrations correlated in negative curvilinear relationships with distance from the canal (r 2 = 0.78, 0.70, 0.61, 0.78, 0.64, 0.57, respectively). Analysis of multiple water quality parameters may reveal the complexity of interactions that might be overlooked in a simple single parameter analysis. These data show an impact of canal water containing high nutrient concentrations on water quality flowing from the canal towards the Refuge interior.
显示更多 [+] 显示较少 [-]Novel Water-Soluble Calix[4,6]arene Appended Magnetic Nanoparticles for the Removal of the Carcinogenic Aromatic Amines 全文
2012
Aksoy, Tuba | Erdemir, Serkan | Yildiz, H Bekir | Yılmaz, Mustafa
This article describes the synthesis of p-sulfonated calix[4,6]arene derivatives and firstly their immobilization onto magnetic nanoparticles for removal of some carcinogenic aromatic amines. The prepared new water-soluble calix[4,6]arene appended magnetic nanoparticles (p-C[4]-MN and p-C[6]-MN) were characterized by a combination of Fourier transform infrared spectroscopy, scanning electron microscopy, and thermogravimetric analyses. The separation and quantification of aromatic amines were performed by high performance liquid chromatography. In batch sorption experiments, the compounds 7 and 8 were found to be effective sorbent for aromatic amines. It was observed that the percentage of aromatic amine removal was 44–97 % for compound 7 and 63–97 % for 8 when the pH of the aromatic amine solution was in the range of 3.0–8.5. The sorption of aromatic amines by p-sulfonated calix[n]arenes-based magnetic nanoparticles shows that sulfonic acid groups play a major role for the formation of hydrogen bonds and electrostatic interactions.
显示更多 [+] 显示较少 [-]Twenty-Year Road Traffic Emissions Trend in Greece 全文
2012
Progiou, Athena | Ziomas, Ioannis
Air pollutants emissions from traffic are very closely connected to urban air quality, in a local scale, as well as to global problems like climate change, in a large scale. Road transport air pollutants emissions represent, in most cases, a critical parameter for a comprehensive and successful understanding of the mechanisms governing the air pollutants concentrations. Hence, reliable estimations and comprehension of road transport emissions are indispensable in order to set reliable strategies in the direction of air pollution abatement and management of air pollutants and greenhouse gases emissions. In this framework, in the present work, the emissions of air pollutants from road transport in Greece will be presented for the whole period 1990–2009 as it was found that a detailed, accurate and reliable emissions inventory was missing. The whole period emissions variation has clarified the impact of the change in the vehicle fleet, the engine technologies and the fuel quality. The calculated results have revealed that the age of the vehicles and the corresponding engine technology are the critical parameters determining the amount of the pollutants emitted. This was mainly observed in both passenger cars and heavy duty vehicles demonstrating the importance of a renewal programme of the old circulating vehicles in order to set an effective air pollution abatement strategy. Passenger cars were found to be responsible for the major part of most air pollutants emissions except from nitrogen oxides and particulates emissions. Heavy duty vehicles contribute more than 66% to nitrogen oxides and particulates emissions. For the whole time period, all calculated pollutants present a decreasing trend, with the exception of carbon dioxide and nitrous oxide which increase constantly, ranging from −96% for sulphur dioxide to −1% for PM10.
显示更多 [+] 显示较少 [-]Investigation of Organic Solvent Resistance Mechanisms in Vibrio alginolyticus IBBCₜ₂ 全文
2012
Stancu, Mihaela Marilena
Constanta harbor has been contaminated for decades with petroleum and petroleum products, which contain different toxic organic solvents. A novel solvent-tolerant bacterium, Vibrio alginolyticus IBBCₜ₂ was isolated from a seawater sample (Constanta harbor). Alkanes (i.e., n-hexane, n-decane, cyclohexane) with logarithm of partition coefficient in n-octanol and water (log P OW ) > 3.35, were less toxic for V. alginolyticus strain IBBCₜ₂, compared with aromatics (i.e., toluene, m-xylene, ethylbenzene) with log P OW < 3.17. The high organic solvent resistance of V. alginolyticus IBBCₜ₂ could be due to the presence of some catabolic (alkB, alkB/alkB1, todC1, xylM, C23DO) and transporter (HAE1, acrAB) genes. The adaptation mechanisms, underlying cyclohexane, n-hexane, n-decane, toluene, m-xylene, and ethylbenzene resistance in V. alginolyticus IBBCₜ₂ showed a complex response of cells 60 min after solvent shock (i.e., modifications of the cell viability, changes in the membrane’s lipid and protein profile, modifications of the genomic fingerprinting). Exposure of V. alginolyticus IBBCₜ₂ cells to salt stress decreases the organic solvents tolerance of this bacterium.
显示更多 [+] 显示较少 [-]Critical Loads of Acidity to Protect and Restore Acid-Sensitive Streams in Virginia and West Virginia 全文
2012
Sullivan, Timothy J. | Cosby, Bernard J. | McDonnell, Todd C. | Porter, Ellen M. | Blett, Tamara | Haeuber, Richard | Huber, Cindy M. | Lynch, Jason
The purpose of the research described here is to apply a new approach for generating aquatic critical load (CL) and exceedance calculations for an important acid-sensitive region of the eastern USA. A widespread problem in regional aquatic acidification CL modeling for US ecosystems has been the lack of site-specific weathering data needed to derive accurate model CL estimates. A modified version of the steady-state water chemistry CL model was applied here to estimate CL and exceedances for streams throughout acid-sensitive portions of Virginia and West Virginia. A novel approach for estimating weathering across the regional landscape was applied, based on weathering estimates extracted from a well-tested, process-based watershed model of drainage water acid–base chemistry and features of the landscape that are available as regional spatial data coverages. This process allowed extrapolation of site-specific weathering data from 92 stream watersheds to the regional context in three ecoregions for supporting CL calculations. Calculated CL values were frequently low, especially in the Blue Ridge ecoregion where one-third of the stream length had CL < 50 meq/m²/year to maintain stream ANC at 50 μeq/L under steady-state conditions. About half or more of the stream length in the study region was in exceedance of the CL for long-term aquatic resource protection under assumed nitrogen saturation at steady state. Land managers and air quality policy makers will need this information to better understand responses to air pollution emissions reductions and to develop ecoregion-specific air pollution targets.
显示更多 [+] 显示较少 [-]Vermicomposts and/or Arbuscular Mycorrhizal Fungal Inoculation in Relation to Metal Availability and Biochemical Quality of a Soil Contaminated with Heavy Metals 全文
2012
Fernández-Gómez, Manuel J. | Quirantes, Mar | Vivas, Astrid | Nogales, Rogelio
A greenhouse pot experiment was conducted to investigate how the addition of two vermicomposts (commercial or produced from damaged greenhouse tomatoes) and/or inoculation with arbuscular mycorrhizal (AM) fungi affected availability and extractability of P, K and trace metals and biochemical quality of a soil contaminated with heavy metals. The pots were planted with Trifolium repens L., which was harvested 40 days after germination. Shoot and root dry matter of T. repens increased by the addition of both vermicomposts. P, K, Fe, Mn, Cu and Zn uptake by T. repens increased after vermicompost addition, whereas Ni, Pb and Cd concentrations were below the detection limit of the method used. After harvest, AB-DTPA-extractable Fe, Cu, Zn, Cd and Pb decreased in the organically amended soil, whereas AB-DTPA P, K and Mn increased. The addition of both vermicomposts, particularly which made from damaged tomatoes, boosted dehydrogenase, β-glucosidase and urease activities in the postharvest soil, implying a higher microbial functional diversity and biochemical quality in this amended soil. Although phosphatase activities were greater in the postharvest soils with higher AB-DTPA-extractable metals, the other enzyme activities were negatively affected. The inoculation of the soils with AM fungi had weak effects on plant growth, as well as on the availability and extractability of metals and enzyme activities compared to noninoculation. © Springer Science+Business Media B.V. 2011.
显示更多 [+] 显示较少 [-]Feasibility of Field Portable Near Infrared (NIR) Spectroscopy to Determine Cyanide Concentrations in Soil 全文
2012
Sut, Magdalena | Fischer, Thomas | Repmann, Frank | Raab, Thomas | Dimitrova, Tsvetelina
Vicinities of manufactured gas plants were often contaminated with solid iron–cyanide complexes as a result of the coal gasification process. During the remediation of affected soils, knowledge about contaminant concentrations is crucial, but laboratory methods are often expensive and time consuming. Rapid and non-destructive field methods for contaminant determination permit an analysis of large sample numbers and hence, facilitate identification of ‘hot spots’ of contamination. Diffuse near infrared reflectance spectroscopy has proven to be a reliable analytical tool in soil investigation. In order to determine the feasibility of a Polychromix Handheld Field Portable Near-Infrared Analyzer (FP NIR), various sample preparation methods were examined, including homogenizing, sieving, drying, and grinding. Partial least squares calibration models were developed to determine near infrared (NIR) spectral responses to the cyanide concentration in the soil samples. As a control, the contaminant concentration was determined using conventional flow injection analysis. The experiments revealed that portable near-infrared spectrometers could be a reliable device for detecting cyanide concentrations >2,400Â mgâkg⁻¹ in the field and >1,750Â mgâkg⁻¹ after sample preparation in the laboratory. We found that portable NIR spectrometry cannot replace traditional laboratory analyses due to high limits of detection, but that it could be used for identification of contamination ‘hot spots’.
显示更多 [+] 显示较少 [-]Adsorptive Removal of Pentachlorophenol by Anthracophyllum discolor in a Fixed-Bed Column Reactor 全文
2012
Rubilar, Olga | Tortella, Gonzalo R. | Cuevas, Raphael | Cea, Mara | Rodriguez-Couto, Susana | Diez, María Cristina
This study investigates pentachlorophenol (PCP) adsorption by the white-rot fungus Anthracophyllum discolor in a fixed-bed column reactor. PCP adsorption at different concentrations (20, 30, and 50 mg L−1) and pH values (5.0, 5.5, and 6.0) was determined and modeled using the Thomas model. Fourier transform infrared spectroscopy (FTIR) was used to identify functional groups of biomass that may participate in the interaction of PCP. The biosorption capacity of A. discolor was pH-dependent, and the PCP adsorbed increased with the decrease in the pH solution. Acid pH values of the influent gave an increase in saturation time in all PCP concentrations. By contrast, the increase in PCP concentration caused that the binding sites were filled quickly, resulting in a decrease in saturation time. The Thomas model was found suitable for describing the entire dynamic of the column with respect to the PCP concentration and pH of the solution. FTIR results showed that amines, carboxylates, alkanes, and C–O groups might participate in the PCP adsorption on the biomass surface. It was concluded that A. discolor biomass was a good adsorbent for PCP removal from influent with mainly acidic pH.
显示更多 [+] 显示较少 [-]Ethanol Addition for Enhancing Denitrification at the Uranium Mill Tailing Site in Monument Valley, AZ 全文
2012
Borden, Andrew K. | Brusseau, Mark L. | Carroll, K. C. | McMillan, Andrew | Akyol, Nihat H. | Berkompas, Justin | Miao, Ziheng | Jordan, Fiona | Tick, Geoff | Waugh, W Jody | Glenn, Ed P.
Past mining and processing of uranium ore at a former uranium mining site near Monument Valley, AZ has resulted in nitrate contamination of groundwater. The objective of this study was to investigate the potential of ethanol addition for enhancing the reduction of nitrate in groundwater. The results of two pilot-scale field tests showed that the concentration of nitrate decreased, while the concentration of nitrous oxide (a product of denitrification) increased. In addition, changes in aqueous concentrations of sulfate, iron, and manganese indicated that the ethanol amendment caused a change in prevailing redox conditions. The results of compound-specific stable isotope analysis for nitrate–nitrogen indicated that the nitrate concentration reductions were biologically mediated. Denitrification rate coefficients estimated for the pilot tests were approximately 50 times larger than resident-condition (non-enhanced) values obtained from prior characterization studies conducted at the site. The nitrate concentrations in the injection zone have remained at levels three orders of magnitude below the initial values for many months, indicating that the ethanol amendments had a long-term impact on the local subsurface environment.
显示更多 [+] 显示较少 [-]Effect of pH Conditions on Actual and Apparent Fluoride Adsorption by Biochar in Aqueous Phase 全文
2012
Oh, Taek-Keun | Choi, Bongsu | Shinogi, Yoshiyuki | Chikushi, Jiro
Biochar is a carbon-rich product derived from biomass through pyrolysis. Fluoride adsorption potential of the biochar derived from orange peel (OP) and water treatment sludge (WS) at different pyrolytic temperatures (400, 600, and 700 °C) was investigated in a batch mode as a function of pH. With respect to adsorption, two types were considered, i.e., actual and apparent adsorption where fluoride combined with metal complexes in solution were counted and not counted, respectively. The highest actual fluoride adsorption was observed in the pH range of 2.0 to 3.9 for OP biochar and 5.1 to 6.2 for WS biochar, respectively. For the WS biochar, apparent fluoride adsorption showed nearly 100 % in the pH range of 2.0 to 4.5, and then the adsorption capacity diminished drastically as the pH increased from 5.0 to 10.0. There was no significant difference between apparent and actual fluoride adsorption for OP biochar. In the Fourier-transform infrared spectroscopic analysis of WS biochar, a strong and sharp band was observed at around 2,364 cm⁻¹ after adsorption of fluoride. Elemental content analysis by the energy-dispersive X-ray method revealed that the fluorine content was higher at pH 6.0 than at pH 3.0 and 9.0 as the results of actual fluoride adsorption. From these results, we may conclude that the biochar derived from OP and WS can be reused as an economical and effective adsorbent for fluoride removal in acidic aqueous phase.
显示更多 [+] 显示较少 [-]