细化搜索
结果 761-770 的 3,991
Spatial distribution and ecological risk assessment of phthalic acid esters and phenols in surface sediment from urban rivers in Northeast China
2016
Li, Bin | Liu, Ruixia | Gao, Hongjie | Tan, Ruijie | Zeng, Ping | Song, Yonghui
Concentration and spatial distribution of six phthalic acid esters (PAEs) and eight phenols in sediments of urban rivers, namely the Xi River (XR) and Pu River (PR) in Shenyang city, Northeast China were investigated and the ecological risk of these target pollutants was assessed based on the risk quotient (RQ) approach. Target PAEs and phenols were detected in most of sediment samples collected from the XR and PR. The concentrations of total PAEs in sediments varied from 22.4 to 369 μg/g dw in the XR and 3.71–46.9 μg/g dw in the PR. The levels of phenols ranged from 2.72 to 106 μg/g dw in the XR and 0.811–25.0 μg/g dw in the PR, respectively. The dominant pollutants in both XR and PR were DEHP, phenol and 4-methylphnol. The sampling locations XR1-3 in the XR suffered severe contamination from PAEs and phenols. The sites PR1 and PR6 were heavily polluted by phenols and PAEs, respectively. Almost all target PAEs and phenolic compounds in sediment of the XR exhibited medium or high ecological risk to organisms and the ecological risk in the PR mainly originated from PEAs, phenol and 4-methylphenol. These results would provide guidance for individual pollutant control and indicate that it is imperative to take some effective measures to reduce the pollution of those contaminants.
显示更多 [+] 显示较少 [-]Experimental examination of effectiveness of vegetation as bio-filter of particulate matters in the urban environment
2016
Chen, Lixin | Liu, Chenming | Zou, Rui | Yang, Mao | Zhang, Zhiqiang
Studies focused on pollutants deposition on vegetation surfaces or aerodynamics of vegetation space conflict in whether vegetation planting can effectively reduce airborne particulate matter (PM) pollution. To achieve a more comprehensive understanding of the conflict, we conducted experiments during 2013 and 2014 in Beijing, China to evaluate the importance of vegetation species, planting configurations and wind in influencing PM concentration at urban and street scales. Results showed that wind field prevailed over the purification function by vegetation at urban scale. All six examined planting configurations reduced total suspended particle along horizontal but not vertical direction. Shrubs and trees–grass configurations performed most effectively for horizontal PM2.5 reduction, but adversely for vertical attenuation. Trapping capacity of PMs was species-specific, but species selection criteria could hardly be generalized for practical use. Therefore, design of planting configuration is practically more effective than tree species selection in attenuating the ambient PM concentrations in urban settings.
显示更多 [+] 显示较少 [-]Predicting exposure-response associations of ambient particulate matter with mortality in 73 Chinese cities
2016
Madaniyazi, Lina | Guo, Yuming | Chen, Renjie | Kan, Haidong | Tong, Shilu
Estimating the burden of mortality associated with particulates requires knowledge of exposure-response associations. However, the evidence on exposure-response associations is limited in many cities, especially in developing countries. In this study, we predicted associations of particulates smaller than 10 μm in aerodynamic diameter (PM10) with mortality in 73 Chinese cities. The meta-regression model was used to test and quantify which city-specific characteristics contributed significantly to the heterogeneity of PM10-mortality associations for 16 Chinese cities. Then, those city-specific characteristics with statistically significant regression coefficients were treated as independent variables to build multivariate meta-regression models. The model with the best fitness was used to predict PM10-mortality associations in 73 Chinese cities in 2010. Mean temperature, PM10 concentration and green space per capita could best explain the heterogeneity in PM10-mortality associations. Based on city-specific characteristics, we were able to develop multivariate meta-regression models to predict associations between air pollutants and health outcomes reasonably well.
显示更多 [+] 显示较少 [-]MiR-34a, a promising novel biomarker for benzene toxicity, is involved in cell apoptosis triggered by 1,4-benzoquinone through targeting Bcl-2
2016
Chen, Yujiao | Sun, Pengling | Guo, Xiaoli | Gao, Ai
Exposure to benzene is inevitable, and concerns regarding the adverse health effects of benzene have been raised. Most investigators found that benzene exposure induced hematotoxicity. In this regard, Our study aimed to explore a novel potential biomarker of adverse health effects following benzene exposure and the toxic mechanisms of benzene metabolites in vitro. This study consisted of 314 benzene-exposed workers and 288 control workers, an air benzene concentration of who were 2.64 ± 1.60 mg/m3 and 0.05 ± 0.01 mg/m3, respectively. In this population-based study, miR-34a expression was elevated in benzene-exposed workers. The correlation of miR-34a with the airborne benzene concentration, S-phenylmercapturic acid (S-PMA) and trans, trans-muconic acid (t, t-MA), all of which reflect benzene exposure, was found. Correlation analysis indicated that miR-34a was associated with peripheral blood count, alanine transaminase (ALT) and oxidative stress. Furthermore, multivariate analysis demonstrated that miR-34a expression was strongly associated with white blood cell count (structure loadings = 0.952). In population-based study, miR-34a had the largest contribution to altered peripheral blood counts, which reflect benzene-induced hematotoxicity. The role of miR-34a in benzene toxicity was assessed using lentiviral vector transfection. Results revealed that 1,4-benzoquinone induced abnormal cell apoptosis and simultaneously upregulated miR-34a accompanied with decreased Bcl-2. Finally, inhibition of miR-34a elevated Bcl-2 and decreased 1,4-benzoquinone-induced apoptosis. In conclusion, miR-34a was observed to be involved in benzene-induced hematotoxicity by targeting Bcl-2 and could be regarded as a potential novel biomarker for benzene toxicity.
显示更多 [+] 显示较少 [-]The effect of lead exposure on fatty acid composition in mouse brain analyzed using pseudo-catalytic derivatization
2016
Jung, Jong-Min | Lee, Jechan | Kim, Ki Hyun | Jang, In Geon | Song, Jae Gwang | Kang, Kyeongjin | Tack, Filip M.G. | Oh, Jeong-Ik | Kwon, Eilhann E. | Kim, Hyung Wook
We performed toxicological study of mice exposed to lead by quantifying fatty acids in brain of the mice. This study suggests that the introduced analytical method had an extremely high tolerance against impurities such as water and extractives; thus, it led to the enhanced resolution in visualizing the spectrum of fatty acid profiles in animal brain. Furthermore, one of the biggest technical advantages achieved in this study was the quantitation of fatty acid methyl ester profiles of mouse brain using a trace amount of sample (e.g., 100 μL mixture). Methanol was screened as the most effective extraction solvent for mouse brain. The behavioral test of the mice before and after lead exposure was conducted to see the effect of lead exposure on fatty acid composition of the mice’ brain. The lead exposure led to changes in disease-related behavior of the mice. Also, the lead exposure induced significant alterations of fatty acid profile (C16:0, C 18:0, and C 18:1) in brain of the mice, implicated in pathology of psychiatric diseases. The alteration of fatty acid profile of brain of the mice suggests that the derivatizing technique can be applicable to most research fields associated with the environmental neurotoxins with better resolution in a short time, as compared to the current protocols for lipid analysis.
显示更多 [+] 显示较少 [-]Tracking the conversion of nitrogen during pyrolysis of antibiotic mycelial fermentation residues using XPS and TG-FTIR-MS technology
2016
Zhu, Xiangdong | Yang, Shijun | Wang, Liang | Liu, Yuchen | Qian, Feng | Yao, Wenqing | Zhang, Shicheng | Chen, Jianmin
Antibiotic mycelial fermentation residues (AMFRs), which are emerging solid pollutants, have been recognized as hazardous waste in China since 2008. Nitrogen (N), which is an environmental sensitivity element, is largely retained in AMFR samples derived from fermentation substrates. Pyrolysis is a promising technology for the treatment of solid waste. However, the outcomes of N element during the pyrolysis of AMFRs are still unknown. In this study, the conversion of N element during the pyrolysis of AMFRs was tracked using XPS (X-ray photoelectron spectroscopy) and online TG-FTIR-MS (Thermogravimetry-Fourier transform infrared-Mass spectrometry) technology. In the AMFR sample, organic amine-N, pyrrolic-N, protein-N, pyridinic-N, was the main N-containing species. XPS results indicated that pyrrolic-N and pyridinic-N were retained in the AMFR-derived pyrolysis char. More stable species, such as N-oxide and quaternary-N, were also produced in the char. TG-FTIR-MS results indicated that NH3 and HCN were the main gaseous species, and their contents were closely related to the contents of amine-N and protein-N, and pyrrolic-N and pyridinic-N of AMFRs, respectively. Increases in heating rate enhanced the amounts of NH3 and HCN, but had less of an effect on the degradation degree of AMFRs. N-containing organic compounds, including amine-N, nitrile-N and heterocyclic-N, were discerned from the AMFR pyrolysis process. Their release range was extended with increasing of heating rate and carbon content of AMFR sample. This work will help to take appropriate measure to reduce secondary pollution from the treatment of AMFRs.
显示更多 [+] 显示较少 [-]Is there any consistency between the microplastics found in the field and those used in laboratory experiments?
2016
Phuong, Nam Ngoc | Zalouk-Vergnoux, Aurore | Poirier, Laurence | Kamari, Abderrahmane | Châtel, Amélie | Mouneyrac, Catherine | Lagarde, Fabienne
The ubiquitous presence and persistency of microplastics (MPs) in aquatic environments are of particular concern since they represent an increasing threat to marine organisms and ecosystems. Great differences of concentrations and/or quantities in field samples have been observed depending on geographical location around the world. The main types reported have been polyethylene, polypropylene, and polystyrene. The presence of MPs in marine wildlife has been shown in many studies focusing on ingestion and accumulation in different tissues, whereas studies of the biological effects of MPs in the field are scarce. If the nature and abundance/concentrations of MPs have not been systematically determined in field samples, this is due to the fact that the identification of MPs from environmental samples requires mastery and execution of several steps and techniques. For this reason and due to differences in sampling techniques and sample preparation, it remains difficult to compare the published studies.Most laboratory experiments have been performed with MP concentrations of a higher order of magnitude than those found in the field. Consequently, the ingestion and associated effects observed in exposed organisms have corresponded to great contaminant stress, which does not mimic the natural environment. Medium contaminations are produced with only one type of polymer of a precise sizes and homogenous shape whereas the MPs present in the field are known to be a mix of many types, sizes and shapes of plastic. Moreover, MPs originating in marine environments can be colonized by organisms and constitute the sorption support for many organic compounds present in environment that are not easily reproducible in laboratory. Determination of the mechanical and chemical effects of MPs on organisms is still a challenging area of research. Among the potential chemical effects it is necessary to differentiate those related to polymer properties from those due to the sorption/desorption of organic compounds.
显示更多 [+] 显示较少 [-]Early life exposure to artificial light at night affects the physiological condition: An experimental study on the ecophysiology of free-living nestling songbirds
2016
Raap, Thomas | Casasole, Giulia | Pinxten, Rianne | Eens, Marcel
Light pollution or artificial light at night (ALAN) is increasingly recognised to be an important anthropogenic environmental pressure on wildlife, affecting animal behaviour and physiology. Early life experiences are extremely important for the development, physiological status and health of organisms, and as such, early exposure to artificial light may have detrimental consequences for organism fitness. We experimentally manipulated the light environment of free-living great tit nestlings (Parus major), an important model species in evolutionary and environmental research. Haptoglobin (Hp) and nitric oxide (NOx), as important indicators of immunity, health, and physiological condition, were quantified in nestlings at baseline (13 days after hatching) and after a two night exposure to ALAN. We found that ALAN increased Hp and decreased NOx. ALAN may increase stress and oxidative stress and reduce melatonin which could subsequently lead to increased Hp and decreased NOx. Haptoglobin is part of the immune response and mounting an immune response is costly in energy and resources and, trade-offs are likely to occur with other energetically demanding tasks, such as survival or reproduction. Acute inhibition of NOx may have a cascading effect as it also affects other physiological aspects and may negatively affect immunocompetence. The consequences of the observed effects on Hp and NOx remain to be examined. Our study provides experimental field evidence that ALAN affects nestlings' physiology during development and early life exposure to ALAN could therefore have long lasting effects throughout adulthood.
显示更多 [+] 显示较少 [-]Association of indoor air pollution from coal combustion with influenza-like illness in housewives
2016
Wang, Bin | Liu, Yingying | Li, Zhenjiang | Li, Zhiwen
An association of influenza-like illness (ILI) with outdoor air pollution has been reported. However, the effect of indoor air pollution on ILI was rarely investigated. We aimed to determine an association of indoor air pollution from coal combustion (IAPCC) and lifestyle with ILI risk in housewives, and the modification effect of phase II metabolic enzyme genes. We recruited 403 housewives for a cross-sectional study in Shanxi Province, China, including 135 with ILI frequency (≥1 time per year in the past ten years) as the case group and 268 with ILI frequency (<1 times per year) as the control group. Information on their energy usage characteristics and lifestyle was collected by questionnaires, as well as the single nucleotide polymorphisms (SNPs) of epoxide hydrolase 1 (rs1051740 and rs2234922), N-acetyltransferase 2 (rs1041983), and glutathione S-transferase (rs1695). We used exposure index to indicate the level of IAPCC among housewives. Our results revealed that the exposure index was positively correlated with ILI frequency. A significant dose-response trend between the exposure index and ILI risk was found with or without adjusting for confounders. Cooking frequency in kitchen with coal as primary fuel and ventilation frequency in the living room or bedroom with a coal-fueled stove for heating during the heating season were two important risk factors to affect ILI frequency. Only rs1051740 was found to be associated with exposure index, whereas it didn’t have interaction effect with exposure index on ILI frequency. In conclusion, IAPCC and SNPs of rs1051740 were both associated with ILI frequency.
显示更多 [+] 显示较少 [-]Study on formation of 2,4,6-trichloroanisole by microbial O-methylation of 2,4,6-trichlorophenol in lake water
2016
Zhang, Kejia | Luo, Zhang | Zhang, Tuqiao | Mao, Minmin | Fu, Jie
To explore the mechanisms and influence factors on the production of 2,4,6-trichloroanisole (2,4,6-TCA) in surface waters, the 2,4,6-TCA formation potential (FP) test was conducted by incubating the real lake water with the addition of 2,4,6-trichlorophenol (2,4,6-TCP) precursor. Besides bacteria and fungi, two common cyanobacteria and algae species, i.e., Chlorella vulgaris and Anabaena flos-aquae, have been proved to have strong capabilities to produce 2,4,6-TCA, which may contribute the high 2,4,6-TCA FP (152.2 ng/L) of lake water. The microbial O-methylation of 2,4,6-TCP precursor is catalyzed by chlorophenol O-methyltransferases (CPOMTs), and their characteristics were identified by adding inductive methyl donors or excluding microorganisms via ultrafiltration. The results indicated both S-adenosyl methionine (SAM) dependent and non-SAM dependent CPOMTs played important roles; extracellular CPOMTs also participated in the biosynthesis of 2,4,6-TCA. Moreover, investigating the effects of various environmental factors revealed initial 2,4,6-TCP processor concentration, temperature, pH and some divalent metal cations (i.e., Mn2+, Mg2+ and Zn2+) had obvious effects on the production of 2,4,6-TCA.
显示更多 [+] 显示较少 [-]