细化搜索
结果 781-790 的 5,153
Tracking major endocrine disruptors in coastal waters using an integrative approach coupling field-based study and hydrodynamic modeling 全文
2018
Xu, Elvis Genbo | Chan, S.N. | Choi, K.W. | Lee, Joseph H.W. | Leung, Kenneth M.Y.
Many of the world's large coastal cities discharge partially treated wastewater effluents containing various endocrine disrupting chemicals (EDCs) to coastal environments. Nonylphenols (NP) and bisphenol A (BPA) were found to be the most abundant EDCs in sewage effluents in Hong Kong. The environmental fate and ecological risk of these two EDCs remains largely unknown, particular for coastal systems with complex hydrodynamic flows. Based on a validated three-dimensional (3D) multiple-scale hydrodynamic model, a field-based study was conducted to track the two EDCs from potential sources to the only marine reserve in Hong Kong. The two compounds were detected in all seawater, suspended particle, and sediment samples, with higher aqueous concentrations in wet season than in dry season. High concentrations in sediments suggest sediment is a sink, posing an ecological risk to the benthos. The fate and transport of the two EDCs was predicted using a 3D near-field Lagrangian jet model seamlessly coupled with a 3D shallow water circulation model. The results suggested the NP and BPA in the marine reserve cannot be solely attributed to the nearby submarine sewage outfall, but likely concurrently contributed by other sources. This study calls for more effective measures of reducing the use and release of these EDCs, and research to investigate their impacts on the marine benthos.
显示更多 [+] 显示较少 [-]Single and combined effects of microplastics and mercury on juveniles of the European seabass (Dicentrarchus labrax): Changes in behavioural responses and reduction of swimming velocity and resistance time 全文
2018
Barboza, Luís Gabriel Antão | Vieira, Luís Russo | Guilhermino, Lúcia
Microplastics and mercury are environmental pollutants of great concern. The main goal of the present study was to investigate the effects of these pollutants, both individually and in binary mixtures, on the swimming performance of juvenile European seabass, Dicentrarchus labrax. Microplastics alone, mercury alone and all the mixtures caused significant reduction of the swimming velocity and resistance time of fish. Moreover, changes in behavioural responses including lethargic and erratic swimming behaviour were observed. These results highlight that fish behavioural responses can be used as sensitive endpoint to establish the effects of contamination by microplastics and also emphasizes the need to assess the combined effects of microplastics and other environmental contaminants, with special attention to the effects on behavioural responses in fish and other aquatic species.
显示更多 [+] 显示较少 [-]Coal combustion residues and their effects on trace element accumulation and health indices of eastern mud turtles (Kinosternon subrubrum) 全文
2018
Cochran, Jarad P. | Haskins, David L. | Eady, Naya A. | Hamilton, Matthew T. | Pilgrim, Melissa A. | Tuberville, Tracey D.
Coal combustion is a major energy source in the US. The solid waste product of coal combustion, coal combustion residue (CCR), contains potentially toxic trace elements. Before 1980, the US primarily disposed of CCR in aquatic settling basins. Animals use these basins as habitat and can be exposed to CCR, potentially affecting their physiology. To investigate the effects of CCR on eastern mud turtles (Kinosternon subrubrum), we sampled 30 turtles exposed to CCRs and 17 unexposed turtles captured in 2015–2016 from the Savannah River Site (Aiken, SC, USA). For captured turtles, we (1) quantified accumulation of CCR in claw and blood samples, (2) used bacterial killing assays to assess influences of CCR on immune responses, (3) compared hemogregarine parasite loads, and (4) compared metabolic rates via flow-through respirometry between CCR-exposed and unexposed turtles when increased temperature was introduced as an added stressor. Turtles exposed to CCR accumulated CCR-associated trace elements, corroborating previous studies. Blood Se and Sr levels and claw As, Se, and Sr levels were significantly higher in turtles from contaminated sites. Average bacterial killing efficiency was not significantly different between groups. Neither prevalence nor average parasite load significantly differed between CCR-exposed and reference turtles, although parasite load increased with turtle size. Regardless of site, temperature had a significant impact on turtle metabolic rates; as temperature increased, turtle metabolic rates increased. The effect of temperature on turtle metabolic rates was less pronounced for CCR-exposed turtles, which resulted in CCR-exposed turtles having lower metabolic rates than reference turtles at 30 and 35 °C. Our results demonstrate that turtles accumulate CCR from their environment and that accumulation of CCR is associated with changes in turtle physiological functions when additional stressors are present.
显示更多 [+] 显示较少 [-]Effect doses for protection of human health predicted from physicochemical properties of metals/metalloids 全文
2018
Wang, Ying | Wu, Fengchang | Liu, Yuedan | Mu, Yunsong | Giesy, John P. | Meng, Wei | Hu, Qing | Liu, Jing | Dang, Zhi
Effect doses (EDs) of metals/metalloids, usually obtained from toxicological experiments are required for developing environmental quality criteria/standards for use in assessment of hazard or risks. However, because in vivo tests are time-consuming, costly and sometimes impossible to conduct, among more than 60 metals/metalloids, there are sufficient data for development of EDs for only approximately 25 metals/metalloids. Hence, it was deemed a challenge to derive EDs for additional metals by use of alternative methods. This study found significant relationships between EDs and physicochemical parameters for twenty-five metals/metalloids. Elements were divided into three classes and then three individual empirical models were developed based on the most relevant parameters for each class. These parameters included log-βn, ΔE0 and Xm²r, respectively (R² = 0.988, 0.839, 0.871, P < 0.01). Those models can satisfactorily predict EDs for another 25 metals/metalloids. Here, these alternative models for deriving thresholds of toxicity that could be used to perform preliminarily, screen-level health assessments for metals are presented.
显示更多 [+] 显示较少 [-]Atmospheric nitrogen deposition in the Yangtze River basin: Spatial pattern and source attribution 全文
2018
Xu, Wen | Zhao, Yuanhong | Liu, Xuejun | Dore, Anthony J. | Zhang, Lin | Liu, Lei | Cheng, Miaomiao
The Yangtze River basin is one of the world's hotspots for nitrogen (N) deposition and likely plays an important role in China's riverine N output. Here we constructed a basin-scale total dissolved inorganic N (DIN) deposition (bulk plus dry) pattern based on published data at 100 observational sites between 2000 and 2014, and assessed the relative contributions of different reactive N (Nr) emission sectors to total DIN deposition using the GEOS-Chem model. Our results show a significant spatial variation in total DIN deposition across the Yangtze River basin (33.2 kg N ha⁻¹ yr⁻¹ on average), with the highest fluxes occurring mainly in the central basin (e.g., Sichuan, Hubei and Hunan provinces, and Chongqing municipality). This indicates that controlling N deposition should build on mitigation strategies according to local conditions, namely, implementation of stricter control of Nr emissions in N deposition hotspots but moderate control in the areas with low N deposition levels. Total DIN deposition in approximately 82% of the basin area exceeded the critical load of N deposition for semi-natural ecosystems along the basin. On the basin scale, the dominant source of DIN deposition is fertilizer use (40%) relative to livestock (11%), industry (13%), power plant (9%), transportation (9%), and others (18%, which is the sum of contributions from human waste, residential activities, soil, lighting and biomass burning), suggesting that reducing NH3 emissions from improper fertilizer (including chemical and organic fertilizer) application should be a priority in curbing N deposition. This, together with distinct spatial variations in emission sector contributions to total DIN deposition also suggest that, in addition to fertilizer, major emission sectors in different regions of the basin should be considered when developing synergistic control measures.
显示更多 [+] 显示较少 [-]Vertical variation of PM2.5 mass and chemical composition, particle size distribution, NO2, and BTEX at a high rise building 全文
2018
Zauli Sajani, Stefano | Marchesi, Stefano | Trentini, Arianna | Bacco, Dimitri | Zigola, Claudia | Rovelli, Sabrina | Ricciardelli, Isabella | Maccone, Claudio | Lauriola, Paolo | Cavallo, Domenico Maria | Poluzzi, Vanes | Cattaneo, Andrea | Harrison, Roy M.
Substantial efforts have been made in recent years to investigate the horizontal variability of air pollutants at regional and urban scales and epidemiological studies have taken advantage of resulting improvements in exposure assessment. On the contrary, only a few studies have investigated the vertical variability and their results are not consistent. In this study, a field experiment has been conducted to evaluate the variation of concentrations of different particle metrics and gaseous pollutants on the basis of floor height at a high rise building. Two 15-day monitoring campaigns were conducted in the urban area of Bologna, Northern Italy, one of the most polluted areas in Europe. Measurements sites were operated simultaneously at 2, 15, 26, 44 and 65 m a.g.l. Several particulate matter metrics including PM₂.₅ mass and chemical composition, particle number concentration and size distribution were measured. Time integrated measurement of NO₂ and BTEX were also included in the monitoring campaigns. Measurements showed relevant vertical gradients for most traffic related pollutants. A monotonic gradient of PM₂.₅ was found with ground-to-top differences of 4% during the warm period and 11% during the cold period. Larger gradients were found for UFP (∼30% during both seasons) with a substantial loss of particles from ground to top in the sub-50 nm size range. The largest drops in concentrations for chemical components were found for Elemental Carbon (−27%), iron (−11%) and tin (−36%) during winter. The ground-to-top decline of concentrations for NO₂ and benzene during winter was equal to 74% and 35%, respectively. In conclusion, our findings emphasize the need to include vertical variations of urban air pollutants when evaluating population exposure and associated health effects, especially in relation to some traffic related pollutants and particle metrics.
显示更多 [+] 显示较少 [-]Tadpoles of the horned frog Ceratophrys ornata exhibit high sensitivity to chlorpyrifos for conventional ecotoxicological and novel bioacoustic variables 全文
2018
Salgado Costa, C. | Ronco, A.E. | Trudeau, V.L. | Marino, D. | Natale, G.S.
Previous studies reported that some species of the family Ceratophryidae are able to produce sounds during premetamorphic tadpole stages. We have now determined the effects of the cholinesterase-inhibiting insecticide chlorpyrifos (CPF) on sounds emitted by tadpoles of Ceratophrys ornata. Tadpoles were exposed individually in order to evaluate the progression of effects. Effects on sound production were complemented with common ecotoxicological endpoints (mortality, behavior, abnormalities and growth inhibition). C. ornata was found to be more sensitive than other native (= 67%, 50%) and non-native species (= 75%, 100%) considering lethal and sublethal endpoints, respectively. Effects on sounds appear along with alterations in swimming, followed by the presence of mild, then severe abnormalities and finally death. Therefore, sound production may be a good biomarker since it anticipates other endpoints that are also affected by CPF. Ceratophrys ornata is a promising new model species in ecotoxicology.
显示更多 [+] 显示较少 [-]Microcystin-LR affects the hypothalamic-pituitary-inter-renal (HPI) axis in early life stages (embryos and larvae) of zebrafish 全文
2018
Ma, Yukun | Wang, Yeke | Giesy, John P. | Chen, Feng | Shi, Ting | Chen, Jun | Xie, Ping
Frequencies and durations of blooms of cyanobacteria are increasing. Some cyanobacteria can produce cyanotoxins including microcystins (MCs). MCs are the most common toxic products of hazardous algal blooms (HABs), with the greatest potential for exposure and to cause toxicity. Recently, MCs have been shown to disrupt endocrine functions. In this study, for the first time, effects of MC-LR on the hypothalamic-pituitary-inter-renal (HPI) axis during early embryonic development (embryos/larvae) of zebrafish (Danio rerio), were investigated. Embryos/larvae of zebrafish were exposed to 1, 10, 100, or 300 μg MC-LR/L during the period of 4–168 h post-fertilization (hpf). Exposure to 300 μg MC-LR/L resulted in significantly greater concentrations of whole-body cortisol than those in controls. Expressions of genes along the HPI axis and mineralocorticoid receptor (MR-) and glucocorticoid receptor (GR-) centered gene networks were evaluated by use of quantitative real-time PCR. Expression of mRNA for crh was significantly down-regulated by exposure to 300 μg MC-LR/L, while expressions of crhbp, crhr1, and crhr2 were significantly up-regulated, relative to controls. MC-LR caused significantly lesser levels of mRNA for steroidogenic genes including hmgra, star, and cyp17, but expression of mRNA for hsd20b was significantly greater than that of controls. Treatment with MC-LR also altered profiles of transcription of MR- and GR-centered gene networks, which might result in multiple responses. Taken together, these results demonstrated that MC-LR affected the corticosteroid-endocrine system of larvae of zebrafish. This study provided valuable insights into molecular mechanisms behind potential toxicity and endocrine disruption of MCs.
显示更多 [+] 显示较少 [-]Ozone risk assessment is affected by nutrient availability: Evidence from a simulation experiment under free air controlled exposure (FACE) 全文
2018
Zhang, Lu | Hoshika, Yasutomo | Carrari, Elisa | Badea, Ovidiu | Paoletti, Elena
Assessing ozone (O3) risk to vegetation is crucial for informing policy making. Soil nitrogen (N) and phosphorus (P) availability could change stomatal conductance which is the main driver of O3 uptake into a leaf. In addition, the availability of N and P could influence photosynthesis and growth. We thus postulated that the sensitivity of plants to O3 may be changed by the levels of N and P in the soil. In this study, a sensitive poplar clone (Oxford) was subject to two N levels (N0, 0 kg N ha−1; N80, 80 kg N ha−1), three P levels (P0, 0 kg P ha−1; P40, 40 kg P ha−1; P80, 80 kg P ha−1) and three levels of O3 exposure (ambient concentration, AA; 1.5 × AA; 2.0 × AA) for a whole growing season in an O3 free air controlled exposure (FACE) facility. Flux-based (POD0 to 6) and exposure-based (W126 and AOT40) dose-response relationships were fitted and critical levels (CLs) were estimated for a 5% decrease of total annual biomass. It was found that N and P availability modified the dose-response relationships of biomass responses to O3. Overall, the N supply decreased the O3 CLs i.e. increased the sensitivity of poplar to O3. Phosphorus alleviated the O3-caused biomass loss and increased the CL. However, such mitigation effects of P were found only in low N and not in high N conditions. In each nutritional treatment, similar performance was found between flux-based and exposure-based indices. However, the flux-based approach was superior, as compared to exposure indices, to explain the biomass reduction when all nutritional treatments were pooled together. The best O3 metric for risk assessments was POD4, with 4.6 mmol m−2 POD4 as a suitable CL for Oxford poplars grown under various soil N and P conditions.
显示更多 [+] 显示较少 [-]Associations of urinary polycyclic aromatic hydrocarbons with bone mass density and osteoporosis in U.S. adults, NHANES 2005–2010 全文
2018
Guo, Jing | Huang, Yun | Bian, Suchen | Zhao, Chuning | Jin, Yumin | Yu, Dongdong | Wu, Xinkai | Zhang, Dan | Cao, Weiming | Jing, Fangyuan | Chen, Guangdi
Polycyclic aromatic hydrocarbons (PAHs) are environmental endocrine disruptors, which may modify the bone mineralization. However, epidemiological evidences on this issue were scant. We aimed to investigate the associations of PAHs with bone mass density (BMD) and osteoporosis based on a nationally-representative sample from general U.S. population. Data utilized were extracted from the 2005–2010 National Health and Nutrition Examination Survey (NHANES). Nine urinary PAHs (U-PAHs) metabolites were measured as exposure biomarkers. Associations of specific U-PAHs with BMD and osteoporosis were estimated by multivariable adjusted linear regression models and logistic regression models, respectively. Compared with women at the first tertiles, those at the third tertiles of 1-Hydroxynapthalene, 2-Hydroxyfluorene, 3-Hydroxyphenanthrene, 2-Hydroxyphenanthrene and 9-Hydroxyfluorene had significantly decreased BMD levels [coefficient (β) = −0.023 to −0.014, p < 0.05] or increased likelihoods of osteoporosis [odds ratios (ORs) = 1.86 to 3.36, p < 0.05] at different bone sites. Whereas, elevated BMD levels (β = 0.021, p < 0.05) at trochanter and decreased likelihoods of osteoporosis (OR = 0.33, p < 0.05) at intertrochanter were observed among women at the second tertiles of 1-Hydroxypyrene and 2-Hydroxynapthalene, respectively. Similar results were found for all the population, i.e., combination of men and women. Most of the significant associations disappeared among adult men only. Furthermore, Associations between U-PAHs and BMD were stronger for postmenopausal women when compared with premenopausal group. In conclusion, associations of U-PAHs with BMD and osteoporosis varied by specific U-PAHs and bone sites, as well as menopausal status and genders in U.S. adults.
显示更多 [+] 显示较少 [-]