细化搜索
结果 791-800 的 4,935
Ten-year regional monitoring of soil-rice grain contamination by heavy metals with implications for target remediation and food safety 全文
2019
He, Mingjiang | Shen, Haoran | Li, Zhangtao | Wang, Lu | Wang, Fan | Zhao, Keli | Liu, Xingmei | Wendroth, Ole | Xu, Jianming
Farmland soil heavy metal contamination could pose potential risks to ecosystems, food safety and human health ultimately. Regional researches on the long-term monitoring of heavy metals in a soil-rice grain system, changed with environmental policy adjustment, have been hindered by limited detailed data. In this study, we collected 169 paired paddy rice grain and corresponding soil samples from a former intensive electronic-waste dismantling region to survey the current status of heavy metal contamination, and to reveal the temporal trends over the past decade based on the previous data obtained in 2006 and 2011. Moderate contaminations of Cd, Cu, Zn and Ni were observed in soil currently. Furthermore, 20.7% of rice grain samples exceeded the Cd threshold value. Cd, Cu, Zn and Pb shared the similar spatial distribution pattern with higher concentrations in northwest, which were contrary to Cr, Ni and As. Risk assessment indicated that much attention is required for the carcinogenic risk of Cr, Cd and As and non-carcinogen risk of Cr. Combining the spatial distribution of heavy metals in soil and rice grains, and the potential ecological risks, with the human health risks, the middle-west rice paddies were identified and proposed as priority areas. Percentage of soil Pb, Cd and Zn decreased in most area and slightly increased in northwest and east. Cu decreased in southwest and increased in central part, while Ni slightly increased in the whole region between 2006 and 2016. With the scrutiny of strict environmental policy, Cd still remained relatively constant levels in soil and rice grains during the last decade, which confirmed that the heavy metals were persisted over the long duration. Target sustainable and ongoing green remediation methods should be adopted urgently in specific area to guarantee food safety and human health for local residents.
显示更多 [+] 显示较少 [-]The impact of lead co-contamination on ecotoxicity and the bacterial community during the bioremediation of total petroleum hydrocarbon-contaminated soils 全文
2019
Khudur, Leadin S. | Shahsavari, Esmaeil | Webster, Grant T. | Nugegoda, Dayanthi | Ball, A. S.
The continued increase in the global demand for oil, which reached 4,488 Mtoe in 2018, leads to large quantities of petroleum products entering the environment posing serious risks to natural ecosystems if left untreated. In this study, we evaluated the impact of co-contamination with lead on the efficacy of two bioremediation processes, natural attenuation and biostimulation of Total Petroleum Hydrocarbons (TPH) as well as the associated toxicity and the changes in the microbial community in contaminated soils. The biostimulated treatment resulted in 96% and 84% reduction in TPH concentration in a single and a co-contamination scenario, respectively, over 28 weeks of a mesocosm study. This reduction was significantly more in comparison to natural attenuation in a single and a co-contamination scenario, which was 56% and 59% respectively. In contrast, a significantly greater reduction in the associated toxicity of in soils undergoing natural attenuation was evident compared with soils undergoing biostimulation despite the lower TPH degradation when bioassays were applied. The earthworm toxicity test showed a decrease of 72% in the naturally attenuated toxicity versus only 62% in the biostimulated treatment of a single contamination scenario. In a co-contamination scenario, toxicity decreased only 30% and 8% after natural attenuation and biostimulation treatments, respectively. 16s rDNA sequence analysis was used to assess the impact of both the co-contamination and the bioremediation treatment. NGS data revealed major bacterial domination by Nocardioides spp., which reached 40% in week 20 of the natural attenuation treatment. In the biostimulated soil samples, more than 50% of the bacterial community was dominated by Alcanivorax spp. in week 12. The presence of Pb in the natural attenuation treatment resulted in an increased abundance of a few Pb-resistant genera such as Sphingopyxis spp. and Thermomonas spp in addition to Nocardioides spp. In contrast, Pb co-contamination completely shifted the bacterial pattern in the stimulated treatment with Pseudomonas spp. comprising approximately 45% of the bacterial profile in week 12. This study confirms the effectiveness of biostimulation over natural attenuation in remediating TPH and TPH-Pb contaminated soils. In addition, the presence of co-contaminants (e.g. Pb) results in serious impacts on the efficacy of bioremediation of TPH in contaminated soils, which must be considered prior to designing any bioremediation strategy.
显示更多 [+] 显示较少 [-]Oxidative stress in the galaxiid fish, Galaxias maculatus, exposed to binary waterborne mixtures of the pro-oxidant cadmium and the anti-oxidant diclofenac 全文
2019
McRae, Nicole K. | Gaw, Sally | Brooks, Bryan W. | Glover, Chris N.
Chemical mixtures represent environmentally-realistic exposures of contaminants to aquatic biota. However, there remains a limited understanding of how toxicant mixtures may impact biological function, relative to their individual components. In the current study, oxidative stress responses of the freshwater galaxiid fish inanga (Galaxias maculatus) were examined following exposure to the pro-oxidant trace metal cadmium (2 or 9 μg L⁻¹), and the anti-oxidant pharmaceutical drug diclofenac (770 μg L⁻¹), individually or in simple binary mixtures. Cadmium exposure in the absence of diclofenac significantly decreased renal catalase activity, increased hepatic catalase activity, decreased renal superoxide dismutase (SOD) and decreased glutathione-S-transferase activity, effects that are suggestive of anti-oxidant defense inhibition and/or generation of increased reactive oxygen species. Diclofenac exposure in the absence of cadmium resulted in a decreased renal lipid peroxidation, consistent with its known anti-oxidant properties. The presence of waterborne diclofenac altered the effects of cadmium on catalase activity in the liver, SOD activity in the gill, and lipid peroxidation in the liver. Co-exposure with cadmium modulated diclofenac effects on lipid peroxidation in the kidney. These data indicate the capacity of each of these toxicants to offset biological effects of the other when both co-occur in urban waters at specific concentrations. This study also demonstrates the complexity of outcomes in contaminant mixtures, even when these stressors are presented as simple binary combinations.
显示更多 [+] 显示较少 [-]Temperature variability and hospitalization for cardiac arrhythmia in Brazil: A nationwide case-crossover study during 2000–2015 全文
2019
Zhao, Qi | Coelho, Micheline S.Z.S. | Li, Shanshan | Saldiva, Paulo H.N. | Hu, Kejia | Abramson, Michael J. | Huxley, Rachel R. | Guo, Yuming
There is growing recognition of a potential role for environmental and climatic factors in influencing cardiovascular risk. It has been speculated that temperature variability (TV) is a risk factor for cardiac arrhythmia but evidence is limited.To quantify the geographic and demographic variations in the association between TV and hospitalization for cardiac arrhythmia in Brazil during 2000–2015.Data on hospitalization for arrhythmia and weather conditions were collected from 1,814 cities. TV was calculated as the standard deviation of daily maximum and minimum temperatures during exposure days. A time-stratified case-crossover approach was applied to examine the city-specific association between TV and hospitalization for arrhythmia. City-specific estimates were pooled at the national and regional levels using a random-effect meta-analysis. Stratified analyses were conducted by sex, three age-groups (0–64, 65–74 and ≥75 years), and three arrhythmia subtypes (paroxysmal tachycardia, atrial fibrillation and flutter, and other arrhythmias).There were 447,667 arrhythmia-related hospitalizations during 2000–2015. The odds ratio of hospitalization per 1 °C increase in TV peaked on 0–1 days’ exposure [1.012 (95% confidence interval: 1.010–1.015)]. There were no substantial differences in effect estimates of TV₀₋₁ by region, age or sex, except for the non-significant association observed in the north. However, women were more affected by prolonged TV exposure than men. For the three arrhythmias subtypes, only paroxysmal tachycardia and other arrhythmias were sensitive to TV. Assuming a causal relationship, 35,813 (95%CI: 18,302−51,665) cases were attributable to TV₀₋₁ in Brazil during 2000–2015, accounting for 8.0% (95%CI: 4.1–11.5%) of hospitalizations for cardiac arrhythmia.At a population-level exposure to TV was associated with increased risk of arrhythmia-related hospitalization in Brazil, with the relationship equally distributed across most residents but varied by arrhythmia subtypes. Our findings add to the accumulating evidence-base that climatic factors can influence cardiovascular outcomes in populations.
显示更多 [+] 显示较少 [-]Effects of sulfamethoxazole and sulfamethoxazole-degrading bacteria on water quality and microbial communities in milkfish ponds 全文
2019
Chang, Bea-Ven | Chang, Yi-Tang | Chao, Wei-Liang | Yeh, Shinn-Lih | Kuo, Dong-Lin | Yang, Chu-Wen
Intensive farming practices are typically used for aquaculture. To prevent disease outbreaks, antibiotics are often used to reduce pathogenic bacteria in aquaculture animals. However, the effects of antibiotics on water quality and microbial communities in euryhaline fish culture ponds are largely unknown. The aim of this study was to investigate the interactions between sulfamethoxazole (SMX), water quality and microbial communities in milkfish (Chanos chanos) culture ponds. The results of small-scale milkfish pond experiments indicated that the addition of SMX decreased the abundance of ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB) and photosynthetic bacteria. Consequently, the levels of ammonia and total phosphorus in the fish pond water increased, causing algal and cyanobacterial blooms to occur. In contrast, the addition of the SMX-degrading bacterial strains A12 and L effectively degraded SMX and reduced the levels of ammonia and total phosphorus in fish pond water. Furthermore, the abundances of AOB, NOB and photosynthetic bacteria were restored, and algal and cyanobacterial blooms were inhibited. This study demonstrate the influences of SMX on water quality and microbial community composition in milkfish culture ponds. Moreover, the use of the bacterial strains A12 and L as dual function (bioaugmentation and water quality maintenance) beneficial bacteria was shown to provide an effective approach for the bioremediation of SMX-contaminated euryhaline milkfish culture ponds.
显示更多 [+] 显示较少 [-]Could benthic biofilm analyses be used as a reliable proxy for freshwater environmental health? 全文
2019
Pu, Yang | Ngan, Wing Yui | Yao, Yuan | Habimana, Olivier
The quality of freshwater undoubtedly reflects the health of our surrounding environment, society, and economy, as these are supported by various freshwater ecosystems. Monitoring efforts have therefore been considered a vital means of ensuring the ecological health of freshwater environments. Nevertheless, most aquatic environmental monitoring strategies largely focus on bulk water sampling for analysis of physicochemical and key biological indicators, which for the most part do not consider pollution events that occur at any time between sampling events. Because benthic biofilms are ubiquitous in aquatic environments, pollution released during sporadic events may be absorbed by these biofilms, which can act as repositories of pollutants. The aim of this study was to assess whether benthic biofilm monitoring could provide an efficient way of properly characterizing the extent of pollution in aquatic environments. Here, bulk water and benthic biofilms were sampled from three Hong Kong streams having various pollution profiles, and subsequently compared via high-resolution microscopy, metagenomic analysis, and analytical chemistry. The results indicated that biofilms were, indeed, reservoirs of environmental pollutants, having different profiles compared with that of the corresponding bulk water samples. Moreover, the results also suggested that biofilms sampled in polluted areas were characterized by a higher species richness. While the analytical testing of benthic biofilms still needs further development, the integration of chemical-pollutant profiles and biofilm sequencing data in future studies may provide unique perspectives for understanding and identifying pollution-related biofilm biomarkers.
显示更多 [+] 显示较少 [-]Hydrogeochemical controls on arsenic mobility in an arid inland basin, Southeast of Iran: The role of alkaline conditions and salt water intrusion 全文
2019
Dehbandi, Reza | Abbasnejad, Ahmad | Karimi, Zohreh | Herath, Indika | Bundschuh, Jochen
Elevated inorganic arsenic concentrations in groundwater has become a major public and environmental health concern in different parts of the world. Currently, As-contaminated groundwater issue in many countries and regions is a major topic for publications at global level. However, there are many regions worldwide where the problem has still not been resolved or fully understood due to inadequate hydrogeochemical investigations. Hence, this study evaluates for the first time the hydrogeochemical behavior of the arid and previously unexplored inland basin of Sirjan Plain, south east (SE) Iran, in order to assess the controlling factors which influence arsenic (As) mobility and its distribution through groundwater resources. Total inorganic arsenic concentration was measured using inductive-coupled plasma optical emission spectrometry (ICP-OES). Arsenic content in groundwater of this region ranged between 2.4 and 545.8 μg/L (mean value: 86.6 μg/L) and 50% of the samples exceeded the World Health Organization (WHO) guideline value of 10 μg/L in drinking water. Groundwater was mainly of Na-Cl type and alkaline due to silicate weathering, ion exchange and evaporation in arid conditions. Elevated As concentrations were generally observed under weakly alkaline to alkaline conditions (pH > 7.4). Multivariate statistical analysis including cluster analysis and bi-plot grouped As with pH and HCO3 and demonstrated that the secondary minerals including oxyhydroxides of Fe are the main source of As in groundwater in this region. The desorption of As from these mineral phases occurs under alkaline conditions in oxidizing arid environments thereby leading to high levels of As in groundwater. Moreover, evaporation, ion exchange and saltwater intrusion were the secondary processes accelerating As release and its mobility in groundwater. Based on the results of this study, desorption of As from metal oxy-hydroxides surfaces under alkaline conditions, evaporation and intrusion of As-rich saline water are considered to be the major factors causing As enrichment in arid inland basins such as those in southeast Iran. This study proposes the regular monitoring and proper groundwater management practices to mitigate high levels of arsenic in groundwater and related drinking water wells of Sirjan Plain.
显示更多 [+] 显示较少 [-]Solid fuel combustion as a major contributor of polycyclic aromatic hydrocarbons in rural China: Evidence from emission inventory and congener profiles in tree bark 全文
2019
Niu, Lili | Zhou, Yuting | Xu, Chao | Zhang, Chunlong | Zhou, Jinghua | Zhang, Xichang | Liu, Weiping
Polycyclic aromatic hydrocarbons (PAHs) remain a focal concern of the air pollution in China. To discriminate the sources of airborne PAHs in Chinese rural regions, a national-scale tree bark sampling campaign and emission inventory estimation were conducted. The concentrations of the sum of 16 U.S. EPA priority PAHs in rural bark ranged from 6.30 to 3803 ng/g, with the dominance of 3- and 4-ring PAHs. Bark residual PAH concentration correlated significantly with emission flux rate, bark lipid content, ambient PM₂.₅, precipitation and sampling location. Based on the information of emission data, bark PAH congener profiles, principal component analysis, diagnostic ratios and compound-specific isotope analysis, solid fuel combustion was identified as the major source and could explain 40.3%–46.4% of bark PAH residues in rural China. The δ¹³C values of most individual PAHs were more negative at sites with lower longitude and latitude, suggesting a greater contribution of biomass combustion to PAH residues. Our results suggest the importance of regulating solid fuel combustion to significantly improve the air quality in China, and bark samples can provide a wealth of information on effectively monitoring and controlling the sources of PAH emission in rural China.
显示更多 [+] 显示较少 [-]Hormetic dose responses induced by lanthanum in plants 全文
2019
Agathokleous, Evgenios | Kitao, Mitsutoshi | Calabrese, Edward J.
Rare earth elements (REEs) have recently received particular attention due to their accumulation in the environment. Such heightened recognition prompted our evaluation of the possible occurrence of La-induced plant hormesis in the peer-reviewed literature. This study revealed 703 La-induced hormetic concentration/dose responses in plants, which were quantitatively and qualitatively assessed. The maximum (MAX) biological response to low La concentrations/doses is commonly below 150% of control response, with a geometric mean of 142% at 56 μM (geometric mean). The geometric mean concentration of the no-observed-adverse-effect-level (NOAEL) was 249 μM. The MAX:NOAEL distance was commonly below 5-fold, with a geometric mean of 4.5-fold. Hormetic concentration/dose responses varied as per the growth substrate pH, number of concentrations/doses below the NOAEL, and time window. These results provide a unique insight into the effects of low doses of La on plant growth, as well as offer means for improving experimental designs to assess low dose effects.
显示更多 [+] 显示较少 [-]Effects of perfluorooctanoic acid on stem Leydig cell functions in the rat 全文
2019
Lü, Hemin | Zhang, Huishan | Gao, Jie | Li, Zhaohui | Bao, Suhao | Chen, Xianwu | Wang, Yiyan | Ge, Renshan | Ye, Leping
Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic (PFOS) are two perfluorinated chemical products widely existing in the environment. Evidence suggested that PFOA might relate to male reproductive dysfunction in rats and humans. PFOA exposure inhibited the function of Leydig cells. However, it is still unknown whether PFOA affects stem Leydig cells (SLCs). In the present study, we examined the effects of a short-term exposure to PFOA on Leydig cell regeneration and also explored the possible mechanism involved. Thirty-six adult Sprague-Dawley rats were randomly divided into three groups and intraperitoneally injected with a single dose of 75 mg/kg ethane dimethyl sulfonate (EDS) to eliminate all Leydig cells. From post-EDS day 7, the 3 group rats received 0, 25 or 50 mg/kg/day PFOA (n = 12 per group) for 9 consecutive days. Exposure to PFOA significantly decreased serum testosterone levels by day 21 and day 56 post-EDS treatment. Also, the expression levels of Leydig cell specific genes (Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Hsd11b1 and Cyp17a1) and their protein levels were all down-regulated. PFOA exposure may also affect proliferation of SLCs or their progeny since the numbers of PCNA-positive Leydig cells were reduced by post-EDS day 21. These in vivo observations were also confirmed by in vitro studies where the effects of PFOA were tested by culture of seminiferous tubules. In summary, PFOA exposure inhibits the development of Leydig cells, possibly by affecting both the proliferation and differentiation of SLCs or their progeny.
显示更多 [+] 显示较少 [-]