细化搜索
结果 791-800 的 6,560
IPM-recommended insecticides harm beneficial insects through contaminated honeydew 全文
2020
Calvo-Agudo, Miguel | González-Cabrera, Joel | Sadutto, Daniele | Picó, Yolanda | Urbaneja, Alberto | Dicke, Marcel | Tena, Alejandro
IPM-recommended insecticides harm beneficial insects through contaminated honeydew 全文
2020
Calvo-Agudo, Miguel | González-Cabrera, Joel | Sadutto, Daniele | Picó, Yolanda | Urbaneja, Alberto | Dicke, Marcel | Tena, Alejandro
The use of some systemic insecticides has been banned in Europe because they are toxic to beneficial insects when these feed on nectar. A recent study shows that systemic insecticides can also kill beneficial insects when they feed on honeydew. Honeydew is the sugar-rich excretion of hemipterans and is the most abundant carbohydrate source for beneficial insects such as pollinators and biological control agents in agroecosystems. Here, we investigated whether the toxicity of contaminated honeydew depends on i) the hemipteran species that excretes the honeydew; ii) the active ingredient, and iii) the beneficial insect that feeds on it. HPLC-MS/MS analyses demonstrated that the systemic insecticides pymetrozine and flonicamid, which are commonly used in Integrated Pest Management programs, were present in honeydew excreted by the mealybug Planococcus citri. However, only pymetrozine was detected in honeydew excreted by the whitefly Aleurothixus floccosus. Toxicological studies demonstrated that honeydew excreted by mealybugs feeding on trees treated either with flonicamid or pymetrozine increased the mortality of the hoverfly Sphaerophoria rueppellii, but did not affect the parasitic wasp Anagyrusvladimiri. Honeydew contaminated with flonicamid was more toxic for the hoverfly than that contaminated with pymetrozine. Collectively, our data demonstrate that systemic insecticides commonly used in IPM programs can contaminate honeydew and kill beneficial insects that feed on it, with their toxicity being dependent on the active ingredient and hemipteran species that excretes the honeydew.
显示更多 [+] 显示较少 [-]IPM-recommended insecticides harm beneficial insects through contaminated honeydew 全文
2020
Calvo-Agudo, Miguel | González-Cabrera, Joel | Sadutto, Daniele | Picó, Yolanda | Urbaneja, Alberto | Dicke, Marcel | Tena, Alejandro
The use of some systemic insecticides has been banned in Europe because they are toxic to beneficial insects when these feed on nectar. A recent study shows that systemic insecticides can also kill beneficial insects when they feed on honeydew. Honeydew is the sugar-rich excretion of hemipterans and is the most abundant carbohydrate source for beneficial insects such as pollinators and biological control agents in agroecosystems. Here, we investigated whether the toxicity of contaminated honeydew depends on i) the hemipteran species that excretes the honeydew; ii) the active ingredient, and iii) the beneficial insect that feeds on it. HPLC-MS/MS analyses demonstrated that the systemic insecticides pymetrozine and flonicamid, which are commonly used in Integrated Pest Management programs, were present in honeydew excreted by the mealybug Planococcus citri. However, only pymetrozine was detected in honeydew excreted by the whitefly Aleurothixus floccosus. Toxicological studies demonstrated that honeydew excreted by mealybugs feeding on trees treated either with flonicamid or pymetrozine increased the mortality of the hoverfly Sphaerophoria rueppellii, but did not affect the parasitic wasp Anagyrus vladimiri. Honeydew contaminated with flonicamid was more toxic for the hoverfly than that contaminated with pymetrozine. Collectively, our data demonstrate that systemic insecticides commonly used in IPM programs can contaminate honeydew and kill beneficial insects that feed on it, with their toxicity being dependent on the active ingredient and hemipteran species that excretes the honeydew. Insecticides recommended in Integrated Pest Management programs reach honeydew and kill beneficial insects that feed on it.
显示更多 [+] 显示较少 [-]IPM-recommended insecticides harm beneficial insects through contaminated honeydew 全文
2020
Calvo-Agudo, Miguel | González-Cabrera, Joel | Sadutto, D. | Picó, Yolanda | Urbaneja, Alberto | Dicke, Marcel | Tena, Alejandro | CSIC - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) | Generalitat Valenciana | Ministerio de Economía y Competitividad (España)
The use of some systemic insecticides has been banned in Europe because they are toxic to beneficial insects when these feed on nectar. A recent study shows that systemic insecticides can also kill beneficial insects when they feed on honeydew. Honeydew is the sugar-rich excretion of hemipterans and is the most abundant carbohydrate source for beneficial insects such as pollinators and biological control agents in agroecosystems. Here, we investigated whether the toxicity of contaminated honeydew depends on i) the hemipteran species that excretes the honeydew; ii) the active ingredient, and iii) the beneficial insect that feeds on it. HPLC-MS/MS analyses demonstrated that the systemic insecticides pymetrozine and flonicamid, which are commonly used in Integrated Pest Management programs, were present in honeydew excreted by the mealybug Planococcus citri. However, only pymetrozine was detected in honeydew excreted by the whitefly Aleurothixus floccosus. Toxicological studies demonstrated that honeydew excreted by mealybugs feeding on trees treated either with flonicamid or pymetrozine increased the mortality of the hoverfly Sphaerophoria rueppellii, but did not affect the parasitic wasp Anagyrus vladimiri. Honeydew contaminated with flonicamid was more toxic for the hoverfly than that contaminated with pymetrozine. Collectively, our data demonstrate that systemic insecticides commonly used in IPM programs can contaminate honeydew and kill beneficial insects that feed on it, with their toxicity being dependent on the active ingredient and hemipteran species that excretes the honeydew. | This research was partially funded by an Instituto Nacional de Investigaciones Agrarias (INIA) (Project RTA2017-00095) and the Conselleria d’Agricultura, Pesca i Alimentació de la Generalitat Valenciana. J.G.C was supported by the Spanish Ministry of Economy and Competitiveness, Ramón y Cajal Program (RYC-2013-13834) and M.C.A was recipient of grant from INIA (CPD2016-0085).
显示更多 [+] 显示较少 [-]IPM-recommended insecticides harm beneficial insects through contaminated honeydew 全文
2020
Calvo-Agudo, Miguel | González-Cabrera, Joel | Sadutto, Daniele | Picó, Yolanda | Urbaneja, Alberto | Dicke, Marcel | Tena, Alejandro
The use of some systemic insecticides has been banned in Europe because they are toxic to beneficial insects when these feed on nectar. A recent study shows that systemic insecticides can also kill beneficial insects when they feed on honeydew. Honeydew is the sugar-rich excretion of hemipterans and is the most abundant carbohydrate source for beneficial insects such as pollinators and biological control agents in agroecosystems. Here, we investigated whether the toxicity of contaminated honeydew depends on i) the hemipteran species that excretes the honeydew; ii) the active ingredient, and iii) the beneficial insect that feeds on it. HPLC-MS/MS analyses demonstrated that the systemic insecticides pymetrozine and flonicamid, which are commonly used in Integrated Pest Management programs, were present in honeydew excreted by the mealybug Planococcus citri. However, only pymetrozine was detected in honeydew excreted by the whitefly Aleurothixus floccosus. Toxicological studies demonstrated that honeydew excreted by mealybugs feeding on trees treated either with flonicamid or pymetrozine increased the mortality of the hoverfly Sphaerophoria rueppellii, but did not affect the parasitic wasp Anagyrus vladimiri. Honeydew contaminated with flonicamid was more toxic for the hoverfly than that contaminated with pymetrozine. Collectively, our data demonstrate that systemic insecticides commonly used in IPM programs can contaminate honeydew and kill beneficial insects that feed on it, with their toxicity being dependent on the active ingredient and hemipteran species that excretes the honeydew.
显示更多 [+] 显示较少 [-]Effect of chronic UVR exposure on zooplankton molting and growth 全文
2020
Wolinski, Laura | Souza, María Sol | Modenutti, Beatriz | Balseiro, Esteban
Effect of chronic UVR exposure on zooplankton molting and growth 全文
2020
Wolinski, Laura | Souza, María Sol | Modenutti, Beatriz | Balseiro, Esteban
Molting is a crucial physiological process in arthropods development, growth, and adult reproduction, where the chitinolytic enzyme chitobiase (CB) and the apoptosis process (caspase-3 activity) play crucial roles. Both molecular endpoints have been observed to be affected by different toxics that may be present in aquatic environments. However, the role of ultraviolet radiation (UVR) in the molting process remains with poor evidence and the possible effect of the previous exposure on F1 generation is unknown. Here, we conducted laboratory experiments with chronic UVR exposure to test the effect on the molting process of Daphnia commutata. Our results showed a clear negative effect of the UVR that affected the molting process with a reduction in individual growth. This trend was also observed in CB and caspase-3 activities. Our results also suggest that the UV dose received by the mother and eggs has an additive effect with the dose received by the offspring. These results imply that the cumulative impact of small UVR doses (2 h per day, daily dose: 2520 J m⁻² of 340 nm) on mothers and eggs (which cannot be discriminated in our experiments) can have an additive or synergistic effect along with the generations through a potential increase in lethal effect. Finally, the observed desynchronization in the molting process by UVR will affect the fitness of individuals and population dynamics.
显示更多 [+] 显示较少 [-]Effect of chronic UVR exposure on zooplankton molting and growth 全文
2020
Wolinski, Laura Isabel | Souza, María Sol | Modenutti, Beatriz Estela | Balseiro, Esteban Gabriel
Molting is a crucial physiological process in arthropods development, growth, and adult reproduction, where the chitinolytic enzyme chitobiase (CB) and the apoptosis process (caspase-3 activity) play crucial roles. Both molecular endpoints have been observed to be affected by different toxics that may be present in aquatic environments. However, the role of ultraviolet radiation (UVR) in the molting process remains with poor evidence and the possible effect of the previous exposure on F1 generation is unknown. Here, we conducted laboratory experiments with chronic UVR exposure to test the effect on the molting process of Daphnia commutata. Our results showed a clear negative effect of the UVR that affected the molting process with a reduction in individual growth. This trend was also observed in CB and caspase-3 activities. Our results also suggest that the UV dose received by the mother and eggs has an additive effect with the dose received by the offspring. These results imply that the cumulative impact of small UVR doses (2 h per day, daily dose: 2520 J m−2 of 340 nm) on mothers and eggs (which cannot be discriminated in our experiments) can have an additive or synergistic effect along with the generations through a potential increase in lethal effect. Finally, the observed desynchronization in the molting process by UVR will affect the fitness of individuals and population dynamics. | Fil: Wolinski, Laura Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentina | Fil: Souza, María Sol. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. Universidad Nacional de Río Negro; Argentina | Fil: Modenutti, Beatriz Estela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina | Fil: Balseiro, Esteban Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
显示更多 [+] 显示较少 [-]Humpback whales (Megaptera novaeangliae) breeding off Mozambique and Ecuador show geographic variation of persistent organic pollutants and isotopic niches 全文
2020
Remili, Anaïs | Gallego, Pierre | Pinzone, Marianna | Castro, Cristina | Jauniaux, Thierry | Garigliany, Mutien-Marie | Malarvannan, Govindan | Covaci, Adrian | Dāsa, Kr̥shṇā
Humpback whales (Megaptera novaeangliae) breeding off Mozambique and Ecuador show geographic variation of persistent organic pollutants and isotopic niches 全文
2020
Remili, Anaïs | Gallego, Pierre | Pinzone, Marianna | Castro, Cristina | Jauniaux, Thierry | Garigliany, Mutien-Marie | Malarvannan, Govindan | Covaci, Adrian | Dāsa, Kr̥shṇā
Humpback whales (Megaptera novaeangliae) from the Southern Hemisphere carry information on persistent organic pollutants (POPs) from their feeding zones in Antarctica to their breeding grounds, making this species a sentinel of contaminants accumulation in the Southern Ocean. This study aimed to evaluate driving factors, namely feeding areas, trophic level, and sex, affecting POP concentrations in the blubber of humpback whales breeding off Mozambique and off Ecuador. Biopsies of free-ranging humpback whales including blubber and skin were collected in 2014 and 2015 from Ecuador (n = 59) and in 2017 from Mozambique (n = 89). In both populations, HCB was the major contaminant followed by DDTs > CHLs > PCBs > HCHs > PBDEs. POP concentrations were significantly higher in males compared to females. HCB, DDTs, HCHs and PBDEs were significantly different between whales from the Mozambique population and the Ecuador population. Sex and feeding habits were important driving factors accounting for POP concentrations in Ecuador whales. The whales from our study had some of the lowest POP concentrations measured for humpback whales in the world. These whales fed predominantly on krill as reflected from the low δ¹³C and δ¹⁵N values measured in the skin. However, the isotopic niches of whales from Mozambique and Ecuador did not overlap indicating that the two populations are feeding in different areas of the Southern Ocean.
显示更多 [+] 显示较少 [-]Humpback whales (Megaptera novaeangliae) breeding off Mozambique and Ecuador show geographic variation of persistent organic pollutants and isotopic niches 全文
2020
Remili, Anaïs | Gallego Reyes, Pedro | Pinzone, Marianna | Castro, Cristina | Jauniaux, Thierry | Garigliany, Mutien-Marie | Malarvannan, Govindan | Covaci, Adrian | Das, Krishna | FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
peer reviewed | Humpback whales (Megaptera novaeangliae) from the Southern Hemisphere carry information on persistent organic pollutants (POPs) from their feeding zones in Antarctica to their breeding grounds, making this species a sentinel of contaminants accumulation in the Southern Ocean. This study aimed to evaluate driving factors, namely feeding areas, trophic level, and sex, affecting POP concentrations in the blubber of humpback whales breeding off Mozambique and off Ecuador. Biopsies of free-ranging humpback whales including blubber and skin were collected in 2014 and 2015 from Ecuador (n = 59) and in 2017 from Mozambique (n = 89). In both populations, HCB was the major contaminant followed by DDTs > CHLs > PCBs > HCHs > PBDEs. POP concentrations were significantly higher in males compared to females. HCB, DDTs, HCHs and PBDEs were significantly different between whales from the Mozambique population and the Ecuador population. Sex and feeding habits were important driving factors accounting for POP concentrations in Ecuador whales. The whales from our study had some of the lowest POP concentrations measured for humpback whales in the world. These whales fed predominantly on krill as reflected from the low δ13C and δ15N values measured in the skin. However, the isotopic niches of whales from Mozambique and Ecuador did not overlap indicating that the two populations are feeding in different areas of the Southern Ocean. | EXPOSURE OF HUMPBACK WHALES FROM THE SOUTHERN HEMISPHERE TO PERSISTENT ORGANIC POLLUTANTS: INFLUENCE OF THEIR ISOTOPIC NICHE, SEX AND AGE DETERMINED BY EPIGENETICS
显示更多 [+] 显示较少 [-]Interactive effects of arsenic and antimony on Ipomoea aquatica growth and bioaccumulation in co-contaminated soil 全文
2020
Egodawatta, Lakmini P. | Holland, Aleicia | Koppel, Darren | Jolley, Dianne F.
Interactive effects of arsenic and antimony on Ipomoea aquatica growth and bioaccumulation in co-contaminated soil 全文
2020
Egodawatta, Lakmini P. | Holland, Aleicia | Koppel, Darren | Jolley, Dianne F.
Antimony (Sb) is an emerging contaminant and until recently it was assumed to behave in a similar way to arsenic (As). Arsenic and Sb often co-occur in contaminated sites, yet most investigations consider their toxicity to plants singly. More research is needed to understand the interactions between As and Sb in soils and plants. This study investigated the interactive effect of As and Sb in terms of soil bioavailability, plant toxicity and bioaccumulation on the commercially important agricultural plant, water spinach (Ipomoea aquatica) using a pot experiment. Plants were exposed to As and Sb individually (As ₍ᵢₙdᵢᵥᵢdᵤₐₗ₎, Sb ₍ᵢₙdᵢᵥᵢdᵤₐₗ₎) and as a mixture (As + Sb ₍cₒₘbᵢₙₑd₎) at different concentrations. Plant growth was measured using shoot and root dry mass, length and chlorophyll a content of leaves. At the end of the bioassay, bioavailable metalloids were extracted from the soil as per a sequential extraction procedure (SEP) and plant tissue was analysed for metalloid content. For As, there were no differences observed between the bioavailability of As in the As + Sb ₍cₒₘbᵢₙₑd₎ and As ₍ᵢₙdᵢᵥᵢdᵤₐₗ₎ treatments. For Sb, no increase in bioavailability was observed with co-contamination compared to single-Sb exposures for most concentrations except at 1250 mg/kg. Single-Sb was not toxic to I. aquatica shoot dry mass and length, but there was greater shoot Sb accumulation in the As + Sb ₍cₒₘbᵢₙₑd₎ than the Sb ₍ᵢₙdᵢᵥᵢdᵤₐₗ₎ treatment. In contrast, single-As was toxic to I. aquatica growth. When As and Sb were present together in the soil, there was a synergistic toxicity to shoot dry mass (EC₅₀ Toxic Unit (TU) was less than 1) and additive toxicity (EC₅₀ equal to 1 TU) to shoot length. This work shows that the co-occurrence of As and Sb in soil increases Sb bioavailability and can cause synergistic toxicity to an important agricultural crop.
显示更多 [+] 显示较少 [-]Interactive effects of arsenic and antimony on Ipomoea aquatica growth and bioaccumulation in co-contaminated soil. 全文
2019
Egodawatta LP | Holland A | Koppel D | Jolley DF
Antimony (Sb) is an emerging contaminant and until recently it was assumed to behave in a similar way to arsenic (As). Arsenic and Sb often co-occur in contaminated sites, yet most investigations consider their toxicity to plants singly. More research is needed to understand the interactions between As and Sb in soils and plants. This study investigated the interactive effect of As and Sb in terms of soil bioavailability, plant toxicity and bioaccumulation on the commercially important agricultural plant, water spinach (Ipomoea aquatica) using a pot experiment. Plants were exposed to As and Sb individually (As (individual), Sb (individual)) and as a mixture (As + Sb (combined)) at different concentrations. Plant growth was measured using shoot and root dry mass, length and chlorophyll a content of leaves. At the end of the bioassay, bioavailable metalloids were extracted from the soil as per a sequential extraction procedure (SEP) and plant tissue was analysed for metalloid content. For As, there were no differences observed between the bioavailability of As in the As + Sb (combined) and As (individual) treatments. For Sb, no increase in bioavailability was observed with co-contamination compared to single-Sb exposures for most concentrations except at 1250 mg/kg. Single-Sb was not toxic to I. aquatica shoot dry mass and length, but there was greater shoot Sb accumulation in the As + Sb (combined) than the Sb (individual) treatment. In contrast, single-As was toxic to I. aquatica growth. When As and Sb were present together in the soil, there was a synergistic toxicity to shoot dry mass (EC50 Toxic Unit (TU) was less than 1) and additive toxicity (EC50 equal to 1 TU) to shoot length. This work shows that the co-occurrence of As and Sb in soil increases Sb bioavailability and can cause synergistic toxicity to an important agricultural crop.
显示更多 [+] 显示较少 [-]Data fusion for the measurement of potentially toxic elements in soil using portable spectrometers 全文
2020
Xu, Dongyun | Chen, Songchao | Xu, Hanyi | Wang, Nan | Zhou, Yin | Shi, Zhou
Data fusion for the measurement of potentially toxic elements in soil using portable spectrometers 全文
2020
Xu, Dongyun | Chen, Songchao | Xu, Hanyi | Wang, Nan | Zhou, Yin | Shi, Zhou
Soil contamination posed by potentially toxic elements is becoming more serious under continuously development of industrialization and the abuse of fertilizers and pesticides. The investigation of soil potentially toxic elements is therefore urgently needed to ensure human and other organisms’ health. In this study, we investigated the feasibility of the separate and combined use of portable X-ray fluorescence (pXRF) and visible near-infrared reflectance (vis-NIR) sensors for measuring eight potentially toxic elements in soil. Low-level fusion was achieved by the direct combination of the pXRF and vis-NIR spectra; middle-level fusion was achieved by the combination of selected bands of the pXRF and vis-NIR spectra using the Boruta feature selection algorithm; and high-level fusion was conducted by outer-product analysis (OPA) and Granger–Ramanathan averaging (GRA). The estimation accuracy for the eight considered elements were in the following order: Zn > Cu > Ni > Cr > As > Cd > Pb > Hg. The measurement for Cu and Zn could be achieved by pXRF spectra alone with Lin’s concordance correlation coefficient (LCCC) values of 0.96 and 0.98, and ratio of performance to interquartile distance (RPIQ) values of 2.36 and 2.69, respectively. The measurement of Ni had the highest model performance for high-level fusion GRA with LCCC of 0.89 and RPIQ of 3.42. The measurements of Cr using middle- and high-level fusion were similar, with LCCC of 0.86 and RPIQ of 2.97. The best estimation accuracy for As, Cd, and Pb were obtained by high-level fusion using OPA, with LCCC >0.72 and RPIQ >1.2. However, Hg measurement by these techniques failed, having an unacceptable performance of LCCC <0.20 and RPIQ <0.75. These results confirm the effectiveness of using portable spectrometers to determine the contents of several potentially toxic elements in soils.
显示更多 [+] 显示较少 [-]Data fusion for the measurement of potentially toxic elements in soil using portable spectrometers 全文
2020
Xu, Dongyun | Chen, Songchao | Xu, Hanyi | Wang, Nan | Zhou, Yin | Shi, Zhou | Zhejiang University [Hangzhou, China] | InfoSol (InfoSol) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Ministry of Agriculture
International audience | Soil contamination posed by potentially toxic elements is becoming more serious under continuously development of industrialization and the abuse of fertilizers and pesticides. The investigation of soil potentially toxic elements is therefore urgently needed to ensure human and other organisms’ health. In this study, we investigated the feasibility of the separate and combined use of portable X-ray fluorescence (pXRF) and visible near-infrared reflectance (vis-NIR) sensors for measuring eight potentially toxic elements in soil. Low-level fusion was achieved by the direct combination of the pXRF and vis-NIR spectra; middle-level fusion was achieved by the combination of selected bands of the pXRF and vis-NIR spectra using the Boruta feature selection algorithm; and high-level fusion was conducted by outer-product analysis (OPA) and Granger–Ramanathan averaging (GRA). The estimation accuracy for the eight considered elements were in the following order: Zn > Cu > Ni > Cr > As > Cd > Pb > Hg. The measurement for Cu and Zn could be achieved by pXRF spectra alone with Lin’s concordance correlation coefficient (LCCC) values of 0.96 and 0.98, and ratio of performance to interquartile distance (RPIQ) values of 2.36 and 2.69, respectively. The measurement of Ni had the highest model performance for high-level fusion GRA with LCCC of 0.89 and RPIQ of 3.42. The measurements of Cr using middle- and high-level fusion were similar, with LCCC of 0.86 and RPIQ of 2.97. The best estimation accuracy for As, Cd, and Pb were obtained by high-level fusion using OPA, with LCCC >0.72 and RPIQ >1.2. However, Hg measurement by these techniques failed, having an unacceptable performance of LCCC <0.20 and RPIQ <0.75. These results confirm the effectiveness of using portable spectrometers to determine the contents of several potentially toxic elements in soils.
显示更多 [+] 显示较少 [-]Inorganic carbon utilization of tropical calcifying macroalgae and the impacts of intensive mariculture-derived coastal acidification on the physiological performance of the rhodolith Sporolithon sp 全文
2020
Narvarte, Bienson Ceasar V. | Nelson, W. A. (Wendy A.) | Roleda, Michael Y.
Inorganic carbon utilization of tropical calcifying macroalgae and the impacts of intensive mariculture-derived coastal acidification on the physiological performance of the rhodolith Sporolithon sp 全文
2020
Narvarte, Bienson Ceasar V. | Nelson, W. A. (Wendy A.) | Roleda, Michael Y.
Fish farming in coastal areas has become an important source of food to support the world’s increasing population. However, intensive and unregulated mariculture activities have contributed to changing seawater carbonate chemistry through the production of high levels of respiratory CO₂. This additional CO₂, i.e. in addition to atmospheric inputs, intensifies the effects of global ocean acidification resulting in localized extreme low pH levels. Marine calcifying macroalgae are susceptible to such changes due to their CaCO₃ skeleton. Their physiological response to CO₂-driven acidification is dependent on their carbon physiology. In this study, we used the pH drift experiment to determine the capability of 9 calcifying macroalgae to use one or more inorganic carbon (Cᵢ) species. From the 9 species, we selected the rhodolith Sporolithon sp. as a model organism to investigate the long-term effects of extreme low pH on the physiology and biochemistry of calcifying macroalgae. Samples were incubated under two pH treatments (pH 7.9 = ambient and pH 7.5 = extreme acidification) in a temperature-controlled (26 ± 0.02 °C) room provided with saturating light intensity (98.3 ± 2.50 μmol photons m⁻² s⁻¹). After the experimental treatment period (40 d), growth rate, calcification rate, nutrient uptake rate, organic content, skeletal CO₃⁻², pigments, and tissue C, N and P of Sporolithon samples were compared. The pH drift experiment revealed species-specific Cᵢ use mechanisms, even between congenerics, among tropical calcifying macroalgae. Furthermore, long-term extreme low pH significantly reduced the growth rate, calcification rate and skeletal CO₃⁻² content by 79%, 66% and 18%, respectively. On the other hand, nutrient uptake rates, organic matter, pigments and tissue C, N and P were not affected by the low pH treatments. Our results suggest that the rhodolith Sporolithon sp. is susceptible to the negative effects of extreme low pH resulting from intensive mariculture-driven coastal acidification.
显示更多 [+] 显示较少 [-]Seawater carbonate chemistry and physiological performance of the rhodolith Sporolithon sp. 全文
2020
Narvarte, Bienson Ceasar V | Nelson, Wendy A | Roleda, Michael Y
Fish farming in coastal areas has become an important source of food to support the world's increasing population. However, intensive and unregulated mariculture activities have contributed to changing seawater carbonate chemistry through the production of high levels of respiratory CO2. This additional CO2, i.e. in addition to atmospheric inputs, intensifies the effects of global ocean acidification resulting in localized extreme low pH levels. Marine calcifying macroalgae are susceptible to such changes due to their CaCO3 skeleton. Their physiological response to CO2-driven acidification is dependent on their carbon physiology. In this study, we used the pH drift experiment to determine the capability of 9 calcifying macroalgae to use one or more inorganic carbon (Ci) species. From the 9 species, we selected the rhodolith Sporolithon sp. as a model organism to investigate the long-term effects of extreme low pH on the physiology and biochemistry of calcifying macroalgae. Samples were incubated under two pH treatments (pH 7.9 = ambient and pH 7.5 = extreme acidification) in a temperature-controlled (26 ± 0.02 °C) room provided with saturating light intensity (98.3 ± 2.50 μmol photons/m**2/s). After the experimental treatment period (40 d), growth rate, calcification rate, nutrient uptake rate, organic content, skeletal CO3-2, pigments, and tissue C, N and P of Sporolithon samples were compared. The pH drift experiment revealed species-specific Ci use mechanisms, even between congenerics, among tropical calcifying macroalgae. Furthermore, long-term extreme low pH significantly reduced the growth rate, calcification rate and skeletal CO3-2 content by 79%, 66% and 18%, respectively. On the other hand, nutrient uptake rates, organic matter, pigments and tissue C, N and P were not affected by the low pH treatments. Our results suggest that the rhodolith Sporolithon sp. is susceptible to the negative effects of extreme low pH resulting from intensive mariculture-driven coastal acidification.
显示更多 [+] 显示较少 [-]Enhancing Cr(VI) reduction and immobilization by magnetic core-shell structured NZVI@MOF derivative hybrids 全文
2020
Fang, Ying | Wen, Jia | Zhang, Haibo | Wang, Qian | Hu, Xiaohong
Hexavalent chromium (Cr(VI)) has significantly threatened the environmental health because of its distinct toxicity. A novel magnetic core-shell structured NZVI@ZD composite was designed for simultaneous adsorption and reduction of Cr(VI). NZVI@ZD was synthesized by carbonization of the as-prepared core-shell structure NZVI@zeolitic imidazole framework-67 (ZIF-67). After carbonization, the original ZIF-67 shell shape was preserved well with marginal parts developing to graphitized carbon. Both cobalt (Co) and NZVI nanoparticles were finely dispersed in the porous ZIF-67 derivative (ZD). NZVI@ZD exhibited excellent removal performance for Cr(VI), owing to its high specific surface area and large pore size favorable for Cr(VI) adsorption and diffusion. The maximum adsorption capacity of NZVI@ZD for Cr(VI) was surprisingly as high as 226.5 mg g⁻¹, surpassing the pristine ZIF-67 (29.35 mg g⁻¹) and NZVI@ZIF-67 (36.53 mg g⁻¹). Zeta potential and X-ray photoelectron spectroscopy (XPS) spectra revealed that electrostatic attraction, reduction and precipitation might be involved in the Cr(VI) removal process by NZVI@ZD, resulting in the conversion of the adsorbed Cr(VI) to Cr(III) of lower toxicity and an eventual immobilization on the NZVI@ZD. The magnetic core-shell structured NZVI@ZD possessed superior adsorptive reactivity for Cr(VI) to most other traditional or newly reported materials, thus should be deemed highly efficient for Cr(VI)-contaminated wastewater treatment.
显示更多 [+] 显示较少 [-]Distribution and availability of rare earth elements and trace elements in the estuarine waters of the Ría of Huelva (SW Spain) 全文
2020
Cánovas, Carlos Ruiz | Basallote, Maria Dolores | Macías, Francisco
Metal pollution in estuaries represents a serious environmental challenge, especially in areas affected by industrial and mining activities. This study investigates the metal partitioning and availability of rare earth elements (REE), Y and other trace metals (Ag, Tl, U and Cs) in the Ria of Huelva estuary (SW Spain), strongly affected by mining and industrial activities. A 30 h monitoring campaign was performed collecting periodic water samples and deploying diffusive gradient in thin films (DGTs) devices to determine the main factors controlling metal availability. The dissolved concentrations of U (3118–3952 ng/L) and Cs (284–392 ng/L) were in the same order of magnitude than those reported in other estuaries and coastal waters worldwide, however, REE (26–380 ng/L), Y (15–109 ng/L), Ag (14–307 ng/L) and Tl (29–631 ng/L) concentrations exceeded these values for the same salinities. Unlike most metals (i.e. Ag, Tl, U, Cs), which were mainly found in the dissolved form (87–100% of total), REE and Y were found in the particulate phase (22–36% of total). Metal lability was mainly related to the concentration in the water column following this order: U>REE>Y>Ag>Tl. A similar binding mechanism was observed for Tl and Cd, due to its chemical affinity. This relationship between chemical properties and absorption by DGT-resin was also observed for REE (and Y), Rb and Sr, which may cause bioaccumulation upon persistent exposure, considering the ability of these metals to cross the biological membranes. The lability of metals predicted by geochemical codes did not coincide with absorption of labile metals by DGTs due probably to the instability of complexes in contact with the DGT membranes, the inability of metals to form thermodynamically stable complexes or the absorption of colloids. From this work it can be concluded that DGT passive sampling should complement traditional sampling to monitor metal availability in aquatic environments.
显示更多 [+] 显示较少 [-]Large eddy simulation of vehicle emissions dispersion: Implications for on-road remote sensing measurements 全文
2020
Huang, Yuhan | Ng, Elvin C.Y. | Surawski, Nic C. | Yam, Yat-Shing | Mok, Wai-Chuen | Liu, Chun-Ho | Zhou, John L. | Organ, Bruce | Chan, Edward F.C.
On-road remote sensing technology measures the concentration ratios of pollutants over CO₂ in the exhaust plume in half a second when a vehicle passes by a measurement site, providing a rapid, non-intrusive and economic tool for vehicle emissions monitoring and control. A key assumption in such measurement is that the emission ratios are constant for a given plume. However, there is a lack of study on this assumption, whose validity could be affected by a number of factors, especially the engine operating conditions and turbulence. To guide the development of the next-generation remote sensing system, this study is conducted to investigate the effects of various factors on the emissions dispersion process in the vehicle near-wake region and their effects on remote sensing measurement. The emissions dispersion process is modelled using Large Eddy Simulation (LES). The studied factors include the height of the remote sensing beam, vehicle speed, acceleration and side wind. The results show that the measurable CO₂ and NO exhaust plumes are relatively short at 30 km/h cruising speed, indicating that a large percentage of remote sensing readings within the measurement duration (0.5 s) are below the sensor detection limit which would distort the derived emission ratio. In addition, the valid measurement region of NO/CO₂ emission ratio is even shorter than the measurable plume and is at the tailpipe height. The effect of vehicle speed (30–90 km/h) on the measurable plume length is insignificant. Under deceleration condition, the length of the valid NO/CO₂ measurement region is shorter than under cruising and acceleration conditions. Side winds from the far-tailpipe direction have a significant effect on remote sensing measurements. The implications of these findings are discussed and possible solutions to improve the accuracy of remote sensing measurement are proposed.
显示更多 [+] 显示较少 [-]Chlorinated organic contaminants in fish from the South China Sea: Assessing risk to Indo-Pacific humpback dolphin 全文
2020
Yu, Xiaoxuan | He, Qingya | Sanganyado, Edmond | Liang, Yan | Bi, Ran | Li, Ping | Liu, Wenhua
Indo-Pacific humpback (Sousa chinensis) dolphins are primarily exposed to chlorinated organic contaminants through the consumption of contaminated fish. We assessed the potential risk of chlorinated organic contaminants to Indo-Pacific humpback dolphins by determining the concentration of 21 organochlorine pesticides (OCPs) and 28 polychlorinated biphenyls (PCBs) in 14 fish species collected from the South China Sea coastal waters. The results of the study showed that bioaccumulation of OCPs and PCBs was influenced by sampling location, fish species, and fish niche. The average ∑DDT (Dichlorodiphenyltrichloroethane) concentration was 3 times higher in benthopelagic fish (488 ng/g) compared to pelagic-neritic fish (155 ng/g) from Jiangmen, whereas an opposite pattern of the lower DDTs concentration in benthopelagic and demersal fish compared to pelagic fish from Zhuhai (p < 0.05). Furthermore, the molecular diagnostic ratios using DDT and its metabolites (DDT/(DDD + DDE) were less than one, suggesting the DDT contamination at Zhuhai and Jiangmen may due to the historical agricultural usage of the lands. The reference dose-based (RfD) risk quotient (RQ) suggested that DDTs are potential risk in Qinzhou, which is in accordance with the high DDTs concentration found in fishes captured in Qinzhou. The RfD risk quotient of PCBs is at potential risk for all sites (RQ > 100), except Xiamen and Qinzhou. A highest average ∑DDT concentration was observed Qinzhou. This study showed that fish consumption might pose a health risk to Indo-Pacific humpback dolphins. However, further studies are required to determine the contribution of fish niche to the overall risk.
显示更多 [+] 显示较少 [-]