细化搜索
结果 801-810 的 4,935
Micromorphology and environmental behavior of oxide deposit layers in sulfide-rich tailings in Tongling, Anhui Province, China 全文
2019
Zheng, Liugen | Qiu, Zheng | Tang, Quan | Li, Yang
Sulfide-rich tailings produced by mineral processing are prone to oxidation and cause many pollution problems in the surrounding environment; therefore, this issue has become a focus of attention. The Tongling Shuimuchong tailings reservoir contains a large amount of sulfide minerals, especially pyrrhotite and pyrite. This reservoir features obvious oxidation in the surface layer, and the slab is very hard. Mineralogical and environmental geochemical analyses were performed on tailings with different degrees of oxidation in the Shuimuchong tailings reservoir to investigate the influence of the formation of the hard oxidized layer on environmental pollution in the tailings pond. The samples were first subjected to particle-size analysis. The shallow tailings were mainly composed of medium particle; the proportions of coarse particle and fine tailings particles were equal; and the proportions of clay and silt were less than those of the other size fractions. Mineralogical analysis showed that pyrrhotite and pyrite were replaced by residual structures in the oxide layer. The secondary minerals goethite, hematite and jarosite were attached to the edges and fractures of sulfide minerals. The samples were geochemically analyzed to determine the total concentrations of 5 elements, the pH and the major anions. The maximum SO₄²⁻ concentrations of 33,970 and 32,749 mg/kg were observed at a depth of 40 cm in profiles 1 and 2, respectively. Metal sulfide mineral oxidation in the tailings lowered the pH of the materials to values less than 4. The concentration of HCO₃⁻ (122–635 mg/kg) in the tailings samples was very low, and the concentration of CO₃²⁻ was zero. As (53.2–133.7 mg/kg), Pb (24.2–307.5 mg/kg) and Hg (0.03–0.06 mg/kg) were concentrated in the highly oxidized layer at the surface; the Cd content (0.23–10.5 mg/kg) increased with decreasing oxidation degree of the tailings; and the Cr content (38.0–54.9 mg/kg) fluctuated around a certain value.
显示更多 [+] 显示较少 [-]Concentrations of cadmium, lead, and mercury in blood among US cigarettes, cigars, electronic cigarettes, and dual cigarette-e-cigarette users 全文
2019
Jain, Ram B.
Data from National Health and Nutrition Examination Survey for 2013–2016 were used to compare observed levels of cadmium, lead, and total mercury in blood among US residents aged ≥12 years who were users of cigars, cigarettes, cigars and cigarettes, e-cigarettes and dual users of cigarettes and e-cigarettes. Total sample size available for analysis was 1139. Adjusted geometric means (AGM) among cigarette, cigar, e-cigarette, cigarette and cigar, and cigarette-e-cigarette users were comparable for blood cadmium lead, and total mercury. Cigar only users had lower AGM than cigar and cigarette users for total mercury (0.56 vs. 0.97 μg/L, p = 0.03). There is no evidence yet that can show concentrations of blood and urine cadmium, lead, and mercury among e-cigarette users are any different than among cigarette and/or dual users of cigarettes and e-cigarettes.
显示更多 [+] 显示较少 [-]Glycine transformation induces repartition of cadmium and lead in soil constituents 全文
2019
Zhang, Yulong | He, Shuran | Zhang, Zhen | Xu, Huijuan | Wang, Jinjin | Chen, Huayi | Liu, Yonglin | Wang, Xueli | Li, Yongtao
Heavy metal stress in soil accelerates the plant root exudation of organic ligands. The degradation of exudate ligands can be fundamental to controlling the complexation of heavy metals. However, this process remains poorly understood. Here, we investigated the relationship between the transformation of glycine, a representative amino acid exudate, and cadmium/lead mobility in soils. Two 48-h incubation experiments were conducted after glycine addition to the soils. Parameters related to glycine distribution and degradation, Cd/Pb mobility, and the formation of glycine-Cd complex were analyzed. Glycine addition gradually decreased the Cd and Pb mobility throughout the 48-h incubation. By the end of the experiment, the CaCl₂-extracted Cd and Pb concentrations decreased by 63.5% and 43.6%, respectively. The glycine mineralization was strong in the first 6 h, as indicated by a sharp decrease in CO₂ efflux rates from 10.04 ± 0.62 to 3.51 ± 0.07 mg C–CO₂ kg⁻¹ soil h⁻¹. The mineralization rates notably decreased after 6 h. The comparisons of dissolved organic carbon and hydrolyzable amino acid contents indicated that glycine mineralization in solution (95.6%) was much stronger than that in soil solids (49.3%). At the end of incubation, 0.22 mmol kg⁻¹ glycine remained in soil solids. The remaining glycine provided sufficient sorption sites for Cd²⁺ and Pb²⁺, resulting in enhanced metal fixation via complexation. Comparisons of zeta potentials supported the formation of the glycine-Cd complex. The Cd and Pb immobilization processes could be attributed to metal-glycine complex formation, sorption re-equilibrium, and glycine degradation. These findings emphasize that the biogeochemical processes of glycine, derived from root exudates or protein degradation products, increased the sorption of heavy metals to soils and thus reduced their toxicity to plants.
显示更多 [+] 显示较少 [-]Simultaneous attenuation of phytoaccumulation of Cd and As in soil treated with inorganic and organic amendments 全文
2019
Yao, Aijun | Ju, Lin | Ling, Xiaodan | Liu, Chong | Wei, Xiange | Qiu, Hao | Tang, Yetao | Morel, J. L. (Jean-Louis) | Qiu, Rongliang | Li, Charlie Chunlin | Wang, Shizhong
Simultaneous attenuation of phytoaccumulation of Cd and As in soil treated with inorganic and organic amendments 全文
2019
Yao, Aijun | Ju, Lin | Ling, Xiaodan | Liu, Chong | Wei, Xiange | Qiu, Hao | Tang, Yetao | Morel, J. L. (Jean-Louis) | Qiu, Rongliang | Li, Charlie Chunlin | Wang, Shizhong
A novel FeSiCa rich material (IS), chicken manure (CM) and its biochar were investigated for their efficiency in simultaneous remediation of Cd and As uptake by the vegetable Brassica chinensis L. Wet chemistry analysis and X-ray powder diffraction, scanning electron microscopy/energy dispersive X-ray spectroscopy as well as Fourier transform infrared spectroscopy were used to reveal the mechanisms responsible for Cd and As fixation in the amended soils. The IS treatment performed best in reducing Cd uptake, while the combination of IS and CM was the optimal one for As fixation. The precipitation/co-precipitation (in cadmium silicate/phosphate/phosphate hydroxide, cadmium iron and manganese oxides under alkaline conditions, and calcium/magnesium/ferric arsenates) and specific chemisorption (by amorphous iron/manganese oxides) were proved to be more efficient in simultaneously lowering As and Cd phytoavailability than was organic complexation. These findings demonstrate that FeSiCa and FeSiCaC amendments are highly efficient and promising in-situ remediation systems for safe crop production on soils contaminated with Cd and As.
显示更多 [+] 显示较少 [-]Simultaneous attenuation of phytoaccumulation of Cd and As in soil treated with inorganic and organic amendments 全文
2019
Yao, Aijun | Ju, Lin | Ling, Xiaodan | Liu, Chong | Wei, Xiange | Qiu, Hao | Tang, Yetao | Morel, Jean-Louis | Qiu, Rongliang | Li, Charlie | Wang, Shizhong | Sun Yat-sen University [Guangzhou] (SYSU) | Shanghai Jiao Tong University [Shanghai] | Laboratoire Sols et Environnement (LSE) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL) | University of California [Davis] (UC Davis) ; University of California (UC)
International audience | A novel FeSiCa rich material (IS), chicken manure (CM) and its biochar were investigated for their efficiency in simultaneous remediation of Cd and As uptake by the vegetable Brassica chinensis L. Wet chemistry analysis and X-ray powder diffraction, scanning electron microscopy/energy dispersive X-ray spectroscopy as well as Fourier transform infrared spectroscopy were used to reveal the mechanisms responsible for Cd and As fixation in the amended soils. The IS treatment performed best in reducing Cd uptake, while the combination of IS and CM was the optimal one for As fixation. The precipitation/co-precipitation (in cadmium silicate/phosphate/phosphate hydroxide, cadmium iron and manganese oxides under alkaline conditions, and calcium/magnesium/ferric arsenates) and specific chemisorption (by amorphous iron/manganese oxides) were proved to be more efficient in simultaneously lowering As and Cd phytoavailability than was organic complexation. These findings demonstrate that FeSiCa and FeSiCaC amendments are highly efficient and promising in-situ remediation systems for safe crop production on soils contaminated with Cd and As.
显示更多 [+] 显示较少 [-]Scavenging as a pathway for plastic ingestion by marine animals 全文
2019
Andrades, Ryan | dos Santos, Roberta Aguiar | Martins, Agnaldo Silva | Teles, Davi | Santos, Robson Guimarães
Plastic pollution is prevalent worldwide and affects marine wildlife from urbanized beaches to pristine oceanic islands. However, the ecological basis and mechanisms that result in marine animal ingestion of plastic debris are still relatively unknown, despite recent advances. We investigated the relationship between scavenging behavior and plastic ingestion using green turtles, Chelonia mydas, as a model. Diet analysis of C. mydas showed that sea turtles engaging in scavenging behavior ingested significantly more plastic debris than individuals that did not engage in this foraging strategy. We argue that opportunistic scavenging behavior, an adaptive behavior in most marine ecosystems, may now pose a threat to a variety of marine animals due to the current widespread plastic pollution found in oceans.
显示更多 [+] 显示较少 [-]Rapid thermal-acid hydrolysis of spiramycin by silicotungstic acid under microwave irradiation 全文
2019
Chen, Zheng | Dou, Xiaomin | Zhang, Yu | Yang, Min | Wei, Dongbin
Spiramycin is a widely used macrolide antibiotic and exists at high concentration in production wastewater. A thermal-acid hydrolytic pretreatment using silicotungstic acid (STA) under microwave (MW) irradiation was suggested to mitigate spiramycin from production wastewater. Positive correlations were observed between STA dosage, MW power, interaction time and the hydrolytic removal efficiencies, and an integrative equation was generalized quantitively. Rapid and complete removal 100 mg/L of spiramycin was achieved after 8 min of reaction with 1.0 g/L of STA under 200 W of MW irradiation, comparing to 30.1% by MW irradiation or 15.9% by STA alone. The synergetic effects of STA and MW irradiation were originated from the dissociated-proton catalysis by STA and the dipolar rotation heating effect of MW. STA performed much better than the mineral acid H2SO4 under MW, due to the much stronger Brönsted acidity and higher Hammett acidity. After 8 min, 98.0% of antibacterial potency was also reduced. The m/z 558.8614 fragment (P1) and m/z 448.1323 fragment (P2) were identified as the primary products, which were formed by breaking glucosidic bonds and losing mycarose and forosamine for P1 and further mycaminose moiety for P2. Finally, production wastewater with 433 mg/L of spiramycin was effectively treated using this thermal-acid hydrolytic method. Spiramycin and its antibacterial potency both dropped to 0 after 6 min. The potency drop was supposed from the losing of mycarose and/or forosamine. To decrease both the concentration of spiramycin and its antibacterial potency, combinedly using STA and MW was suggested in this work to break down the structural bonds of the functional groups rather than to destroy the whole antibiotic molecules. It is promising for pretreating spiramycin-contained production wastewater to mitigate both the antibiotic and its antibacterial potency.
显示更多 [+] 显示较少 [-]Cadmium contamination in agricultural soils of China and the impact on food safety 全文
2019
Wang, Peng | Chen, Hongping | Kopittke, Peter M. | Zhao, Fang-Jie
Rapid industrialization in China during the last three decades has resulted in widespread contamination of Cd in agricultural soils. A considerable proportion of the rice grain grown in some areas of southern China has Cd concentrations exceeding the Chinese food limit, raising widespread concern regarding food safety. In this review, we summarize rice grain Cd concentrations in national Chinese markets and in field surveys from contaminated areas, and analyze the potential health risk associated with increased dietary Cd intake. For subsistence rice farmers living in some contaminated areas of southern China who mainly consume locally-produced Cd-contaminated rice, their estimated dietary Cd intake is now comparable to that for the population in the region of Japan where the Itai-Itai disease was first reported. Interventions must be taken urgently to reduce Cd intake for these farmers. We also analyze i) the main reasons causing elevated grain Cd concentrations in southern China, ii) the dominant biogeochemical processes controlling the solubility of Cd in paddy soils, and iii) molecular mechanisms for the uptake and translocation of Cd in rice plants. Based on these analyses, we propose a number of countermeasures to address soil Cd contamination, including i) mitigation of Cd transfer from paddy soils to rice grain, and ii) intervention in those farmers who consume home-grown Cd-contaminated rice. Liming to increase soil pH to 6.5 and gene editing biotechnology are effective strategies to decrease Cd accumulation in rice grain. For these local farmers with high-Cd exposure risk, local governments should monitor the Cd concentration in their home-grown rice and exchange those high-Cd rice with low-Cd rice in order to reduce their dietary Cd intake.
显示更多 [+] 显示较少 [-]PM2.5 elements at an urban site in Yangtze River Delta, China: High time-resolved measurement and the application in source apportionment 全文
2019
Yu, Yiyong | He, Shuyan | Wu, Xilan | Zhang, Chi | Yao, Ying | Liao, Hong | Wang, Qin'geng | Xie, Mingjie
Elemental concentrations of ambient aerosols are commonly sampled over 12–24 h, and the low time resolution puts a great limit on current understanding about the temporal variations and source apportionment based on receptor models. In this work, hourly-resolved concentrations of eighteen elements in PM₂.₅ at an urban site in Nanjing, a megacity in Yangtze River Delta of east China, were obtained by using a Xact 625 ambient metals monitor from 12/12/2016 to 12/31/2017. The influence of traffic activities was clearly reflected by the spikes of crustal elements (e.g., Fe, Ca, and Si) in the morning rush hour, and the firework burning and sandstorm events during the sampling periods were tracked by sharp enrichment of Ba, K and Fe, Ca, Si, Ti in PM₂.₅, respectively. To evaluate the advantage of hourly-resolved elements data in identifying impacts from specific emission sources, positive matrix factorization (PMF) analysis was performed with the 1-h data set (PMF₁₋ₕ) and 23-h averaged data (PMF₂₃₋ₕ), respectively. The 4- and 6-factor PMF₂₃₋ₕ solutions had similar factor profiles and consistent factor contributions as the corresponding PMF₁₋ₕ solutions. However, due to the limit in inter-sample variability, PMF analysis with 23-h average data misclassified some major (e.g., K, Fe, Zn, Ca, and Si) and trace (e.g., Pb) elements in factor profiles, resulting in different absolute factor contributions between PMF₂₃₋ₕ and PMF₁₋ₕ solutions. These results suggested the use of high time-resolved data to obtain valid and robust source apportionment results.
显示更多 [+] 显示较少 [-]Particulate matter accumulation capacity of plants in Hanoi, Vietnam 全文
2019
Bertold, Mariën | Sinh, Nguyen Van | Mariën, Bertold | Mariën, Joachim | Nguyễn, Xuân Hòa | Nguyễn, Thế Cường | Nguyẽ̂n, Miên Thượng | Samson, Roeland
Population growth, urbanization, environmental conditions and rapid development have caused particulate matter (PM) levels to rise above all national and international health standards during the last two decades in many South-East Asian countries. These PM levels needs to be reduced urgently as they increase the risk of cardiovascular and respiratory health problems for millions of people. Plants have shown to efficiently reduce PM in the air by accumulation on their leaves. In order to investigate which plant species accumulate most PM, we screened 49 common plant species for their PM accumulation capacity in one of the tropical cities with the highest PM concentrations of the world, Hanoi (Vietnam). Using this subset of plants, we tested if certain leaf characteristics (leaf hydrophilicity, stomatal densities and the specific leaf area) can predict the PM accumulation efficiency of plant species. Our results show that the PM accumulation capacity varies substantially among species and that Muntingia calabura accumulated most PM in our subset of plants. We observed that plants with hydrophilic leaves, a low specific leaf area and a high abaxial stomatal density accumulated significantly more PM. Plants with these characteristics should be preferred by urban architects to reduce PM levels in tropical environments.
显示更多 [+] 显示较少 [-]Effect of calcination on structure and photocatalytic property of N-TiO2/g-C3N4@diatomite hybrid photocatalyst for improving reduction of Cr(Ⅵ) 全文
2019
Sun, Qing | Hu, Xiaolong | Zheng, Shuilin | Zhang, Jian | Sheng, Jiawei
The N-TiO2/g-C3N4@diatomite (NTCD) composite has been prepared through a simple impregnation method, using titanium tetrachloride as precursor and urea as nitrogen-carbon source. Then the effects of calcination temperature on structure, surface property and photocatalytic activity of the catalysts were investigated. And XRD, TEM, XPS, FTIR and UV–vis diffuse adsorption spectroscopy were used to characterize the obtained powders. The photocatalytic activity of the NTCD was evaluated through the reduction of aqueous Cr (VI) under visible light irradiation (λ > 400 nm). The results demonstrated that the nano-TiO2 particles ranging from 15 to 30 nm in the crystal of anatase are well deposited on the surface of diatomite in the NTCD-500 which calcined at 500 °C for 2 h. Furthermore, the g-C3N4 with the lay thickness of 0.92 nm was attached to the surface of nano-TiO2. The N-doped TiO2 and g-C3N4 doped catalysts could co-enhance response in the visible light region and reduce band gap of NTCD-500 (Eg = 3.07 eV). And the NTCD-500 sample exhibited nearly 100% removal rate within 5 h for photocatalytic reduction of Cr (VI) which was higher activity than P25, crude TiO2@diatomite and g-C3N4@diatomite.
显示更多 [+] 显示较少 [-]