细化搜索
结果 811-820 的 4,038
Ecotoxicity and genotoxicity of cadmium in different marine trophic levels 全文
2016
Pavlaki, Maria D. | Araújo, Mário J. | Cardoso, Diogo N. | Silva, Ana Rita R. | Cruz, Andréia | Mendo, Sónia | Soares, Amadeu M.V.M. | Calado, Ricardo | Loureiro, Susana
Cadmium ecotoxicity and genotoxicity was assessed in three representative species of different trophic levels of marine ecosystems – the calanoid copepod Acartia tonsa, the decapod shrimp, Palaemon varians and the pleuronectiform fish Solea senegalensis. Ecotoxicity endpoints assessed in this study were adult survival, hatching success and larval development ratio (LDR) for A. tonsa, survival of the first larval stage (zoea I) and post-larvae of P. varians, egg and larvae survival, as well as the presence of malformations in the larval stage of S. senegalensis. In vivo genotoxicity was assessed on adult A. tonsa, the larval and postlarval stage of P. varians and newly hatched larvae of S. senegalensis using the comet assay. Results showed that the highest sensitivity to cadmium is displayed by A. tonsa, with the most sensitive endpoint being the LDR of nauplii to copepodites. Sole eggs displayed the highest tolerance to cadmium compared to the other endpoints evaluated for all tested species. Recorded cadmium toxicity was (by increasing order): S. senegalensis eggs < P. varians post-larvae < P. varians zoea I < S. senegalensis larvae < A. tonsa eggs < A. tonsa LDR. DNA damage to all species exposed to cadmium increased with increasing concentrations. Overall, understanding cadmium chemical speciation is paramount to reliably evaluate the effects of this metal in marine ecosystems. Cadmium is genotoxic to all three species tested and therefore may differentially impact individuals and populations of marine taxa. As A. tonsa was the most sensitive species and occupies a lower trophic level, it is likely that cadmium contamination may trigger bottom-up cascading effects in marine trophic interactions.
显示更多 [+] 显示较少 [-]Adsorption-uptake-metabolism kinetic model on the removal of BDE-47 by a Chlorella isolate 全文
2016
Deng, Dan | Tam, Nora F.Y.
Polybrominated diphenyl ethers (PBDEs) are persistent and toxic organic pollutants, causing hazardous to ecosystems and human health but are difficult to remove from contaminated environments. The mechanism and kinetics of a Chlorella isolate to remove BDE-47 were investigated. This species isolated from the influent of wastewater treatment plants in Hong Kong was PBDE tolerant. More than 80% of BDE-47 was removed in short- and long-term experiments lasting 1 h and 7 days, respectively. The dominant removal process was adsorption on cell surfaces, with 73% of the spiked BDE-47 removed within five minutes of exposure. As the exposure prolonged, the adsorption became saturated. BDE-47 on cell surfaces was then gradually taken up into cells. At the end of the 7-day exposure, 17% of the spiked BDE-47 was within cells, while 27% was metabolized. Four metabolites, including BDE-28, 6-OH- and 5-OH-BDE-47, and 6-MeO-BDE-47, were produced from the debromination, hydroxylation and methoxylation of BDE-47. The removal kinetics of BDE-47 by freshwater microalgae could be explained by the multi-compartmental adsorption-uptake-metabolism model developed in this study.
显示更多 [+] 显示较少 [-]Gas and particle size distributions of polychlorinated naphthalenes in the atmosphere of Beijing, China 全文
2016
Zhu, Qingqing | Zhang, Xian | Dong, Shujun | Gao, Lirong | Liu, Guorui | Zheng, Minghui
Polychlorinated naphthalenes (PCNs) were listed as persistent organic pollutants in the Stockholm Convention in 2015. Despite numerous studies on PCNs, little is known about their occurrence in atmospheric particulate matter of different sizes. In this study, 49 PCN congeners were investigated for their concentrations and size-specific distributions in an urban atmosphere, and preliminary exposure assessments were conducted. Ambient air samples were collected using a high-volume cascade impactor for division into a gas fraction and four particle size fractions. Samples were collected from October 2013 to June 2014 at an urban site in Beijing, China. The concentration range for PCNs in the atmosphere (gas + particle fractions) was 6.77–25.90 pg/m3 (average 16.28 pg/m3). The particle-bound concentration range was 0.17–2.78 pg/m3 (average 1.73 pg/m3). Therefore, PCNs were mainly found in the gas phase. The concentrations of PCNs in a fraction increased as the particle size decreased (dae > 10 μm, 10 μm ≥ dae > 2.5 μm, 2.5 μm ≥ dae > 1.0 μm and dae ≤ 1.0 μm). Consequently, PCNs were ubiquitous in inhalable fine particles, and the ΣPCNs associated with PM1.0 and PM2.5 reached 68.4% and 84.3%, respectively. Tetra-CNs and penta-CNs (the lower chlorinated homologues) predominated in the atmosphere. The homologue profiles in different size particles were almost similar, but the particulate profiles were different from those in the gas phase. Among the individual PCNs identified, CN38/40, CN52/60 and CN75 were the dominant compounds in the atmosphere. CN66/67 and CN73 collectively accounted for most of the total dioxin-like TEQ concentrations of the PCNs. Exposure to toxic compounds, such as PCNs present in PM1.0 or PM2.5, may affect human health. This work presents the first data on size-specific distributions of PCNs in the atmosphere.
显示更多 [+] 显示较少 [-]Blood trihalomethane levels and the risk of total cancer mortality in US adults 全文
2016
Min, Chin-yŏng | Min, Kyoung-Bok
Although animal data have suggested the carcinogenic activity of trihalomethanes (THMs), there is inconsistent evidence supporting the link between THM exposure and cancers in humans.We investigated the association between specific and total blood THM levels with the risk of total cancer mortality in adults.We analyzed data from the 1999–2004 Third National Health and Nutrition Examination Survey and the Linked Mortality File of the United States. A total of 933 adults (20–59 years of age) with available blood THM levels and no missing data for other variables were included. Four different THM species (chloroform, bromodichloromethane (BDCM), dibromochloromethane (DBCM) and bromoform) were included, and the codes associated with cancer (malignant neoplasm) were C00 through C97, based on the underlying causes of death listed in the International Classification of Disease 10the Revision.Compared with adults in the lowest DBCM, bromoform, and total brominated THM tertiles, those in the highest DBCM, bromoform, and total brominated THM tertiles exhibited adjusted hazard ratios (HR) of total cancer mortality of 4.97 (95% confidence interval (CI) = 1.59–15.50), 4.94 (95% CI = 1.56–15.61), and 3.42 (95% CI = 1.21–15.43) respectively. The risk of total cancer mortality was not associated with increases in blood chloroform and total THM levels.We found that the baseline blood THM species, particularly brominated THMs, were significantly associated with total cancer mortality in adults. Although this study should be confirm by other studies, our findings suggest a possible link between THM exposures and cancer.
显示更多 [+] 显示较少 [-]Is mercury from small-scale gold mining prevalent in the southeastern Peruvian Amazon? 全文
2016
Moreno-Brush, Mónica | Rydberg, Johan | Gamboa, Nadia | Storch, Ilse | Biester, Harald
There is an ongoing debate on the fate of mercury (Hg) in areas affected by artisanal and small-scale gold mining (ASGM). Over the last 30 years, ASGM has released 69 tons of Hg into the southeastern Peruvian Amazon. To investigate the role of suspended matter and hydrological factors on the fate of ASGM-Hg, we analysed riverbank sediments and suspended matter along the partially ASGM-affected Malinowski-Tambopata river system and examined Hg accumulation in fish. In addition, local impacts of atmospheric Hg emissions on aquatic systems were assessed by analysing a sediment core from an oxbow lake. Hg concentrations in riverbank sediments are lower (20–53 ng g−1) than in suspended matter (∼400–4000 ng g−1) due to differences in particle size. Elevated Hg concentrations in suspended matter from ASGM-affected river sections (∼1400 vs. ∼30–120 ng L−1 in unaffected sections) are mainly driven by the increased amount of suspended matter rather than increased Hg concentrations in the suspended matter. The oxbow lake sediment record shows low Hg concentrations (64–86 ng g−1) without evidence of any ASGM-related increase in atmospheric Hg input. Hg flux variations are mostly an effect of variations in sediment accumulation rates. Moreover, only 5% of the analysed fish (only piscivores) exceed WHO recommendations for human consumption (500 ng g−1). Our findings show that ASGM-affected river sections in the Malinowski-Tambopata system do not exhibit increased Hg accumulation, indicating that the released Hg is either retained at the spill site or transported to areas farther away from the ASGM areas. We suspect that the fate of ASGM-Hg in such tropical rivers is mainly linked to transport associated with the suspended matter, especially during high water situations. We assume that our findings are typical for ASGM-affected areas in tropical regions and could explain why aquatic systems in such ASGM regions often show comparatively modest enrichment in Hg levels.
显示更多 [+] 显示较少 [-]Bioaccumulation and metabolomics responses in oysters Crassostrea hongkongensis impacted by different levels of metal pollution 全文
2016
Cao, Chen | Wang, Wen-Xiong
Jiulong River Estuary, located in southern China, was heavily contaminated by metal pollution. In this study, the estuarine oysters Crassostrea hongkongensis were transplanted to two sites with similar hydrological conditions but different levels of metal pollution in Jiulong River Estuary over a six-month period. We characterized the time-series change of metal bioaccumulation and final metabolomics responses of oysters. Following transplantation, all metals (Cd, Cu, Cr, Ni, Pb, and Zn) in the oyster digestive glands had elevated concentrations over time. By the end of six-month exposure, Cu, Zn and Cd were the main metals significantly differentiating the two sites. Using 1H NMR metabolite approach, we further demonstrated the disturbance in osmotic regulation, energy metabolism, and glycerophospholipid metabolism induced by metal contaminations. Six months later, the oysters transplanted in the two sites showed a similar metabolite variation pattern when compared with the initial oysters regardless of different metal levels in the tissues. Interestingly, by comparing the oysters from two sites, the more severely polluted oysters accumulated significantly higher amounts of osmolytes (betaine and homarine) and lower energy storage compounds (glycogen) than the less polluted oysters; these changes could be the potential biomarkers for different levels of metal pollution. Our study demonstrated the complexity of biological effects under field conditions, and NMR metabolomics provides an important approach to detect sensitive variation of oyster inner status.
显示更多 [+] 显示较少 [-]Sub-lethal effects of water-based drilling muds on the deep-water sponge Geodia barretti 全文
2016
Edge, Katelyn J. | Johnston, Emma L. | Dafforn, Katherine A. | Simpson, Stuart L. | Kutti, Tina | Bannister, Raymond J.
Offshore oil and gas activities can result in the discharge of large amounts of drilling muds. While these materials have generally been regarded as non-toxic to marine organisms, recent studies have demonstrated negative impacts to suspension feeding organisms. We exposed the arctic-boreal sponge Geodia barretti to the primary particulate components of two water-based drilling muds; barite and bentonite. Sponges were exposed to barite, bentonite and a natural reference sediment at a range of total suspended solid concentrations (TSS = 0, 10, 50 or 100 mg/L) for 12 h after which we measured a suite of biomarker responses (lysosomal membrane stability, lipid peroxidation and glutathione). In addition, we compared biomarker responses, organic energy content and metal accumulation in sponges, which had been continuously or intermittently exposed to suspended barite and natural sediment for 14 d at relevant concentrations (10 and 30 mg TSS/L). Lysosomal membrane stability was reduced in the sponges exposed to barite at 50 and 100 mg TSS/L after just 12 h and at 30 mg TSS/L for both continuous and intermittent exposures over 14 d. Evidence of compromised cellular viability was accompanied by barite analysis revealing concentrations of Cu and Pb well above reference sediments and Norwegian sediment quality guidelines. Metal bioaccumulation in sponge tissues was low and the total organic energy content (determined by the elemental composition of organic tissue) was not affected. Intermittent exposures to barite resulted in less toxicity than continuous exposure to barite. Short term exposures to bentonite did not alter any biomarker responses. This is the first time that these biomarkers have been used to indicate contaminant exposure in an arctic-boreal sponge. Our results illustrate the potential toxicity of barite and the importance of assessments that reflect the ways in which these contaminants are delivered under environmentally realistic conditions.
显示更多 [+] 显示较少 [-]Association of indoor air pollution from coal combustion with influenza-like illness in housewives 全文
2016
Wang, Bin | Liu, Yingying | Li, Zhenjiang | Li, Zhiwen
An association of influenza-like illness (ILI) with outdoor air pollution has been reported. However, the effect of indoor air pollution on ILI was rarely investigated. We aimed to determine an association of indoor air pollution from coal combustion (IAPCC) and lifestyle with ILI risk in housewives, and the modification effect of phase II metabolic enzyme genes. We recruited 403 housewives for a cross-sectional study in Shanxi Province, China, including 135 with ILI frequency (≥1 time per year in the past ten years) as the case group and 268 with ILI frequency (<1 times per year) as the control group. Information on their energy usage characteristics and lifestyle was collected by questionnaires, as well as the single nucleotide polymorphisms (SNPs) of epoxide hydrolase 1 (rs1051740 and rs2234922), N-acetyltransferase 2 (rs1041983), and glutathione S-transferase (rs1695). We used exposure index to indicate the level of IAPCC among housewives. Our results revealed that the exposure index was positively correlated with ILI frequency. A significant dose-response trend between the exposure index and ILI risk was found with or without adjusting for confounders. Cooking frequency in kitchen with coal as primary fuel and ventilation frequency in the living room or bedroom with a coal-fueled stove for heating during the heating season were two important risk factors to affect ILI frequency. Only rs1051740 was found to be associated with exposure index, whereas it didn’t have interaction effect with exposure index on ILI frequency. In conclusion, IAPCC and SNPs of rs1051740 were both associated with ILI frequency.
显示更多 [+] 显示较少 [-]Assessing the impacts of phosphorus inactive clay on phosphorus release control and phytoplankton community structure in eutrophic lakes 全文
2016
Su, Yuping | Zhang, Chaowei | Liu, Jianxi | Weng, Yuan | Li, Helong | Zhang, Dayi
Addressing the challenge that phosphorus is the key factor and cause for eutrophication, we evaluated the phosphorus release control performance of a new phosphorus inactive clay (PIC) and compared with Phoslock®. Meanwhile, the impacts of PIC and Phoslock® on phytoplankton abundance and community structure in eutrophic water were also discussed. With the dosage of 40 mg/L, PIC effectively removed 97.7% of total phosphorus (TP) and 98.3% of soluble reactive phosphorus (SRP) in eutrophic waters. In sediments, Fe/Al-phosphorus and organic phosphorus remained stable whereas Ca-phosphorus had a significant increase of 13.1%. The results indicated that PIC may form the active overlay at water-sediment interface and decrease the bioavailability of phosphorus. The phytoplankton abundance was significantly reduced by PIC and decreased from (1.0–2.4) × 107 cells/L to (1.3–4.3) × 106 cells/L after 15 d simultaneous experiment. The phytoplankton community structure was also altered, where Cyanobacteria and Bacillariophyceae were the most inhibited and less dominant due to their sensitivity to phosphorus. After PIC treatment, the residual lanthanum concentration in water was 1.44–3.79 μg/L, and the residual aluminium concentration was low as 101.26–103.72 μg/L, which was much less than the recommended concentration of 200 μg/L. This study suggests that PIC is an appropriate material for phosphorus inactivation and algal bloom control, meaning its huge potential application in eutrophication restoration and management.
显示更多 [+] 显示较少 [-]Bayesian Maximum Entropy space/time estimation of surface water chloride in Maryland using river distances 全文
2016
Jat, Prahlad | Serre, Marc L.
Widespread contamination of surface water chloride is an emerging environmental concern. Consequently accurate and cost-effective methods are needed to estimate chloride along all river miles of potentially contaminated watersheds. Here we introduce a Bayesian Maximum Entropy (BME) space/time geostatistical estimation framework that uses river distances, and we compare it with Euclidean BME to estimate surface water chloride from 2005 to 2014 in the Gunpowder-Patapsco, Severn, and Patuxent subbasins in Maryland. River BME improves the cross-validation R2 by 23.67% over Euclidean BME, and river BME maps are significantly different than Euclidean BME maps, indicating that it is important to use river BME maps to assess water quality impairment. The river BME maps of chloride concentration show wide contamination throughout Baltimore and Columbia-Ellicott cities, the disappearance of a clean buffer separating these two large urban areas, and the emergence of multiple localized pockets of contamination in surrounding areas. The number of impaired river miles increased by 0.55% per year in 2005–2009 and by 1.23% per year in 2011–2014, corresponding to a marked acceleration of the rate of impairment. Our results support the need for control measures and increased monitoring of unassessed river miles.
显示更多 [+] 显示较少 [-]