细化搜索
结果 821-830 的 1,539
Assessment of Two Nonnative Poeciliid Fishes for Monitoring Selenium Exposure in the Endangered Desert Pupfish
2012
Saiki, Michael K. | Martin, Barbara A. | May, Thomas W. | Brumbaugh, William G.
We assessed the suitability of two nonnative poeciliid fishes—western mosquitofish (Gambusia affinis) and sailfin mollies (Poecilia latipinna)—for monitoring selenium exposure in desert pupfish (Cyprinodon macularius). Our investigation was prompted by a need to avoid lethal take of an endangered species (pupfish) when sampling fish for chemical analysis. Total selenium (SeTot) concentrations in both poeciliids were highly correlated with SeTot concentrations in pupfish. However, mean SeTot concentrations varied among fish species, with higher concentrations measured in mosquitofish than in mollies and pupfish from one of three sampled agricultural drains. Moreover, regression equations describing the relationship of selenomethionine to SeTot differed between mosquitofish and pupfish, but not between mollies and pupfish. Because selenium accumulates in animals primarily through dietary exposure, we examined fish trophic relationships by measuring stable isotopes (δ 13C and δ 15N) and gut contents. According to δ 13C measurements, the trophic pathway leading to mosquitofish was more carbon-depleted than trophic pathways leading to mollies and pupfish, suggesting that energy flow to mosquitofish originated from allochthonous sources (terrestrial vegetation, emergent macrophytes, or both), whereas energy flow to mollies and pupfish originated from autochthonous sources (filamentous algae, submerged macrophytes, or both). The δ 15N measurements indicated that mosquitofish and mollies occupied similar trophic levels, whereas pupfish occupied a slightly higher trophic level. Analysis of gut contents showed that mosquitofish consumed mostly winged insects (an indication of terrestrial taxa), whereas mollies and pupfish consumed mostly organic detritus. Judging from our results, only mollies (not mosquitofish) are suitable for monitoring selenium exposure in pupfish.
显示更多 [+] 显示较少 [-]Use of Dynamic Factors to Assess Metal Uptake and Transfer in Plants—Example of Trees
2012
BaltrÄnaitÄ, Edita | Lietuvninkas, Arvydas | BaltrÄnas, Pranas
To evaluate plant responses and compare metal uptake by different plants, several parameters and references have been used by researchers in the last few years. However, they express only the first-level comparison, i.e. biogeochemical comparison of different media (plant and soil) occurs in one place, at the same time and under the same circumstances. To integrate information about metal concentration in different media or plant organ and provide comparison of the process between control and treated cases, the second-level factors, the dynamic factors, are needed. Differently from the factors mentioned in the existing literature, they are able to show changes in processes under environmental changes rather than changes only in metal quantities. They are related both to internal (physiological) and external (ecological) factors. The paper introduces the use of dynamic factors for assessment of transfer and translocation of metals (Zn, Pb, Ni, Mn, Cu and Cr) in Scots pine (Pinus sylvestris L.), silver birch (Betula pendula) and black alder (Alnus glutinosa). Factor values and their implications are discussed in the paper.
显示更多 [+] 显示较少 [-]Toxic Metal Removal from Polluted Soil by Acid Extraction
2012
Bisone, Sara | Blais, Jean-François | Drogui, Patrick | Mercier, Guy
Sulfuric acid leaching is a promising technique to extract toxic metals from polluted soils. The objective of this study was to define the optimum sulfuric acid leaching conditions for decontamination of the fine particle fraction (<125 μm) of an industrial soil polluted by Cd (16.8 mg kg⁻¹), Cu (3,350 mg kg⁻¹), Pb (631 mg kg⁻¹) and Zn (3,010 mg kg⁻¹). Batch leaching tests in Erlenmeyer shake flasks showed that a soil pulp pH between 1.5 and 2.0 using a solid concentration (SC) ranging from 5 to 20 % is adequate to efficiently solubilize toxic metals. Leaching tests performed at different temperatures (20, 40, 60 and 80 °C) also revealed that it is not beneficial to heat the soil suspension during the leaching treatment. The application in a 1-L stirred tank reactor of five consecutive 1-h leaching steps at 10 % SC and ambient temperature, followed by three water washings steps resulted in the following metal extraction yields: 30 % As, 90 % Cd, 43 % Co, 7 % Cr, 88 % Cu, 75 % Mn, 26 % Ni, 18 % Pb and 86 % Zn. The decontaminated soil conformed to Quebec norms for commercial and industrial use of soil.
显示更多 [+] 显示较少 [-]Adsorption of Phosphate from Aqueous Solution Using an Iron–Zirconium Binary Oxide Sorbent
2012
Ren, Zongmin | Shao, Lina | Zhang, Gaosheng
In this study, an iron–zirconium binary oxide with a molar ratio of 4:1 was synthesized by a simple coprecipitation process for removal of phosphate from water. The effects of contact time, initial concentration of phosphate solution, temperature, pH of solution, and ionic strength on the efficiency of phosphate removal were investigated. The adsorption data fitted well to the Langmuir model with the maximum P adsorption capacity estimated of 24.9 mg P/g at pH 8.5 and 33.4 mg P/g at pH 5.5. The phosphate adsorption was pH dependent, decreasing with an increase in pH value. The presence of Cl⁻, SO ₄ ²⁻ , and CO ₃ ²⁻ had little adverse effect on phosphate removal. A desorbability of approximately 53 % was observed with 0.5 M NaOH, indicating a relatively strong bonding between the adsorbed PO ₄ ³⁻ and the sorptive sites on the surface of the adsorbent. The phosphate uptake was mainly achieved through the replacement of surface hydroxyl groups by the phosphate species and formation of inner-sphere surface complexes at the water/oxide interface. Due to its relatively high adsorption capacity, high selectivity and low cost, this Fe–Zr binary oxide is a very promising candidate for the removal of phosphate ions from wastewater.
显示更多 [+] 显示较少 [-]Hydraulic Loading Rate Effect on Removal Rates in a BioSand Filter: A Pilot Study of Three Conditions
2012
Kennedy, T. J. | Hernandez, E. A. | Morse, A. N. | Anderson, T. A.
Safe drinking water is a luxury to approximately 800 million people worldwide. The number of people without access to clean water has been reduced, thanks to technologies like the biosand filter (BSF), an intermittently operated household scale slow sand filter. The BSF outlet (control diameter 0.5â³) was modified in this study by reducing the outlet diameter (0.37â³ and 0.25â³) to determine the effects of hydraulic retention time on removal rates. Filters were dosed with 20Â L of spiked lake water daily and observed for pH, dissolved oxygen (DO), fecal coliforms (FC), turbidity, nitrate, nitrite, sulfate, and ammonia until initial flow rates dropped below 0.2Â L/min. Consistent with previous studies, the average turbidity was reduced to below 1Â NTU; the average DO was reduced by 45Â %. No significant difference was observed between the modified BSFs and the control BSF. Removal efficiency of FC was not significantly different between the modified BSFs (93.3Â % and 91.9Â %) and the control BSF (89.6Â %). Mean FC reduction during the startup period (17Â days) was significantly greater in the modified 0.25â³ BSF when compared with the control during the same time period. After the first 17Â days of the experiment, the average reduction efficiency of all filters was >97Â %. While source water was below guideline values for nitrate, nitrite, ammonia, and sulfate during the course of the experiment, total nitrogen reduction was observed. The reduction indicates that the plastic BSF is capable of accomplishing limited denitrification during the filtering process.
显示更多 [+] 显示较少 [-]Soil Degradation Due to Vicinal Intensive Hog Farming Operation Located in East Mediterranean
2012
Liodakis, Stylianos | Michalopoulos, Charalampos | Efthymiou, Elpida | Katsigiannis, Georgios
One of the main environmental impacts of concentrated animal feeding operations is the soil degradation in vicinity with the livestock breeding facilities due to substances such as ammonia emitted from the various stages of the process. Owing to the high temperatures of the Mediterranean ecosystems, the evolution of gasses is more extensive and the soil degradation is consequently more severe than those obtained in northern Europe. In this research, the soil degradation effects of a large meat-producing, processing, and packaging unit have been investigated. The investigated intensive hog farming operation (IHFO) is located at a limestone soil coastal area with sea to the north and hills to the south. Soil samples of the upper mineral soil were taken in various distances and directions from the IHFO boundaries. Thirteen experimental cycles were carried out in the duration of 1.5 years starting in March 2009 until October 2010. The soil samples were analyzed on pH and electrical conductivity (EC) values as well as NH4 + and NO3 − concentrations. Significantly higher concentrations of the two nitrogen forms were observed on samples at increasing proximity downwind from the farm (south). Southern soil average NH4 + and NO3 − concentrations ranged between 0.4–118 μg NH4 +-N g−1 soil and 6.1–88.4 μg NO3 −-N g−1 soil, respectively. The variation of emitted gasses depositions was clearly reflected in the average pH and EC values. Average pH and EC values downwind from IHFO boundaries varied between 7.1–8.2 and 140–268 μS/cm, respectively.
显示更多 [+] 显示较少 [-]Microcosm Study of Iron Mobilization and Greenhouse Gas Evolution in Soils of a Plantation-Forested Subtropical Coastal Catchment
2012
Lin, Chaofeng | Larsen, Eloise I. | Grace, Peter R. | Smith, Jim (James J.)
This study examined the potential for Fe mobilization and greenhouse gas (GHG, e.g. CO₂, and CH₄) evolution in SEQ soils associated with a range of plantation forestry practices and water-logged conditions. Intact, 30-cm-deep soil cores collected from representative sites were saturated and incubated for 35 days in the laboratory, with leachate and headspace gas samples periodically collected. Minimal Fe dissolution was observed in well-drained sand soils associated with mature, first-rotation Pinus and organic Fe complexation, whereas progressive Fe dissolution occurred over 14 days in clear-felled and replanted Pinus soils with low organic matter and non-crystalline Fe fractions. Both CO₂ and CH₄ effluxes were relatively lower in clear-felled and replanted soils compared with mature, first-rotation Pinus soils, despite the lack of statistically significant variations in total GHG effluxes associated with different forestry practices. Fe dissolution and GHG evolution in low-lying, water-logged soils adjacent to riparian and estuarine, native-vegetation buffer zones were impacted by mineral and physical soil properties. Highest levels of dissolved Fe and GHG effluxes resulted from saturation of riparian loam soils with high Fe and clay content, as well as abundant organic material and Fe-metabolizing bacteria. Results indicate Pinus forestry practices such as clear-felling and replanting may elevate Fe mobilization while decreasing CO₂ and CH₄ emissions from well-drained, SEQ plantation soils upon heavy flooding. Prolonged water-logging accelerates bacterially mediated Fe cycling in low-lying, clay-rich soils, leading to substantial Fe dissolution, organic matter mineralization, and CH₄ production in riparian native-vegetation buffer zones.
显示更多 [+] 显示较少 [-]Removal of Residual Oils from Palm Oil Mill Effluent by Adsorption on Natural Zeolite
2012
Shavandi, M. A. | Haddadian, Z. | Ismail, M. H. S. | Abdullah, N. | Abidin, Z. Z.
The adsorption of residue oil from palm oil mill effluent using natural zeolite was investigated in this study. The adsorption was performed in batch mode, and the effect of different operational parameters such as pH, dose of adsorbent, stirring rate, contact time and initial oil concentration were explored. It was found that the pH plays a major role in the adsorption process. Isotherm data best fitted with the Freundlich model, and kinetic data followed the pseudo-second-order kinetic model. The results obtained demonstrated that the oil removal efficiencies by natural zeolite were up to 70 % at a pH of 3.0 and 50 min of contact time. The adsorbent material also has been characterised by X-ray diffraction, X-ray fluorescence and scanning electron microscopy.
显示更多 [+] 显示较少 [-]A Hybrid Approach for PAHs and Metals Removal from Field-Contaminated Sediment Using Activated Persulfate Oxidation Coupled with Chemical-Enhanced Washing
2012
Lo, I. M. C. | Tanboonchuy, V. | Yan, D. Y. S. | Grisdanurak, N. | Liao, C. H.
The aim of this study was to investigate the removal of both polycyclic aromatic hydrocarbons (PAHs) and heavy metals from field-contaminated sediments by activated persulfate oxidation. Various chemicals, including hydroxypropyl-β-cyclodextrin (HPCD), S,S-ethylenediaminedisuccinic acid (EDDS), tetrasodium pyrophosphate (Na₄P₂Oâ), and hydrochloric acid (HCl), were applied individually before or after activated persulfate oxidation to enhance the co-removal of both types of pollutants. It was found that the organic removal efficiency was not significantly enhanced by increasing the concentration of HPCD from 2.5 to 5.0Â mM. The removal efficiency of heavy metals was not improved even at an excess amount of EDDS after activated persulfate oxidation. However, the addition of EDDS acted as the Fe²+ carrier for activated persulfate oxidation. In addition, no significant enhancement of heavy metal removal was observed by increasing the concentrations of Na₄P₂Oâ and HCl from 0.01 to 0.1Â M after activated persulfate oxidation. However, comparing 0.1Â M HCl with 0.1Â M Na₄P₂Oâ, HCl was shown to be more effective in promoting the removal of organic pollutants. With further adjustments on the experimental conditions, the highest removal amount of metals and PAHs was achieved by adding 2Â M of HCl with 3Â days mixing, followed by Fe²+-activated persulfate oxidation (PS/Fe²+ molar ratio at 4:1) for further 6Â h mixing. The removal efficiency of low and high molecular weight PAHs was about 70 and 20Â %, respectively, while the removal efficiency of metals was 70, 100, 40, 65, 65, 80, and 100Â % for Cr, Cu, Hg, Mn, Ni, Pb, and Zn, respectively.
显示更多 [+] 显示较少 [-]Hyperspectral Remote Sensing of Total Phosphorus (TP) in Three Central Indiana Water Supply Reservoirs
2012
Song, Kaishan | Li, Lin | Li, Shuai | Tedesco, Lenore | Hall, Bob | Li, Linhai
The connection between nutrient input and algal blooms for inland water productivity is well known but not the spatial pattern of water nutrient loading and algae concentration. Remote sensing provides an effective tool to monitor nutrient abundances via the association with algae concentration. Twenty-one field campaigns have been conducted with samples collected under a diverse range of algal bloom conditions for three central Indiana drinking water bodies, e.g., Eagle Creek Reservoir (ECR), Geist Reservoir (GR), and Morse Reservoir (MR) in 2005, 2006, and 2008, which are strongly influenced anthropogenic activities. Total phosphorus (TP) was estimated through hyperspectral remote sensing due to its close association with chlorophyll a (Chl-a), total suspended matter, Secchi disk transparency (SDT), and turbidity. Correlation analysis was performed to determine sensitive spectral variables for TP, Chl-a, and SDT. A hybrid model combining genetic algorithms and partial least square (GA-PLS) was established for remote estimation of TP, Chl-a, and SDT with selected sensitive spectral variables. The result indicates that TP has close association with diagnostic spectral variables with R 2 ranging from 0.55 to 0.72. However, GA-PLS has better performance with an average R 2 of 0.87 for aggregated dataset. GA-PLS was applied to the airborne imaging data (AISA) to map spatial distribution of TP, Chl-a, and SDT for MR and GR. The eutrophic status was evaluated with Carlson trophic state index using TP, Chl-a, and SDT maps derived from AISA images. Mapping results indicated that most MR belongs to mesotrophic (48.6%) and eutrophic (32.7%), while the situation was more severe for GR with 57.8% belongs to eutrophic class, and more than 40% to hypereutrophic class due to the high turbidity resulting from dredging practices.
显示更多 [+] 显示较少 [-]