细化搜索
结果 861-870 的 7,995
Valorization of cherry pits: Great Lakes agro-industrial waste to mediate Great Lakes water quality 全文
2021
Pollard, Zoe A. | Goldfarb, Jillian L.
To meet human food and fiber needs in an environmentally and economically sustainable way, we must improve the efficiency of waste, water, and nutrient use by converting vast quantities of agricultural and food waste to renewable bioproducts. This work converts waste cherry pits, an abundant food waste in the Great Lakes region, to biochars and activated biochars via slow pyrolysis. Biochars produced have surface areas between 206 and 274 m²/g and increased bioavailability of Fe, K, Mg, Mn, and P. The biochars can be implemented as soil amendments to reduce nutrient run-off and serve as a valuable carbon sink (biochars contain 74–79% carbon), potentially mitigating harmful algal blooms in the Great Lakes. CO₂-activated biochars have surface areas of up to 629 m²/g and exhibit selective metal adsorption for the removal of metals from simulated contaminated drinking water, an environmental problem plaguing this region. Through sustainable waste-to-byproduct valorization we convert this waste food biomass into biochar for use as a soil amendment and into activated biochars to remove metals from drinking water, thus alleviating economic issues associated with cherry pit waste handling and reducing the environmental impact of the cherry processing industry.
显示更多 [+] 显示较少 [-]Two-year and multi-site field trials to evaluate soil amendments for controlling cadmium accumulation in rice grain 全文
2021
Fang, Xu | Wang, Jing | Chen, Hongping | Christl, Iso | Wang, Peng | Kretzschmar, Ruben | Zhao, Fang-Jie
Representing the staple crop for half of the world population, rice can accumulate high levels of cadmium (Cd) in its grain, posing concerns on food safety. Different soil amendments have been proposed to decrease Cd accumulation in rice grain by either decreasing soil Cd availability, introducing competitive ions on Cd uptake, or down-regulating the expression of transporters for Cd uptake. However, the effectiveness of soil amendments applied alone or in combinations needs to be tested under field conditions. Here, we present results of field trials with two rice cultivars differing in Cd accumulation grown at three field sites in southern China in two years, to investigate the effects of two Mn-containing soil amendments (MnO₂, Mn-loaded biochar (MB)), Si fertilizer (Si), limestone, and K₂SO₄, as well as interactions among MnO₂, Si, and limestone on decreasing Cd accumulation in rice grain. We found that single applications of MnO₂ or MB to acidic soils low in Mn decreased grain Cd concentrations by 44–53 % or 78–82 %, respectively, over two years without decrease in performance. These effects were comparable to or greater than those induced by limestone liming alone (45–62 %). Strong interactions between MnO₂ and limestone resulting from their influence on soil extractable Cd and Mn led to non-additive effects on lowering grain Cd. MB addition minimized grain Cd concentrations, primarily by increasing extractable and dissolved Mn concentrations, but also by decreasing Cd extractability in soil. In comparison, Si and K₂SO₄ amendments affected grain Cd levels only weakly. We conclude that the amendments that decrease labile Cd and increase labile Mn in soils are most effective at reducing Cd accumulation in rice grain, thus contributing to food safety.
显示更多 [+] 显示较少 [-]Ecotoxicological screening of UV-filters using a battery of marine bioassays 全文
2021
Vieira Sanches, Matilde | Oliva, Matteo | De Marchi, Lucia | Cuccaro, Alessia | Puppi, Dario | Chiellini, Federica | Freitas, Rosa | Pretti, Carlo
Ecotoxicological screening of UV-filters using a battery of marine bioassays 全文
2021
Vieira Sanches, Matilde | Oliva, Matteo | De Marchi, Lucia | Cuccaro, Alessia | Puppi, Dario | Chiellini, Federica | Freitas, Rosa | Pretti, Carlo
The present study aimed to assess the toxicity of seven UV-filters: zinc oxide nanoparticles (nZnO, particle size <100 nm), titanium dioxide nanoparticles (nTiO₂, primary particle size 21 nm), 2-ethylhexyl-4-methoxycinnamate (EHMC), 4-methylbenzylidene camphor (4-MBC), avobenzone (AVO), octocrylene (OCTO) and benzophenone-3 (BP-3) on three species: Aliivibrio fischeri (inhibition of bioluminescence), Phaeodactylum tricornutum (growth inhibition) and Ficopomatus enigmaticus (larval development success). Results showed nTiO₂ to be the most toxic for P. tricornutum (EC₅₀ 0.043 mg L⁻¹), while no effect was observed in A. fischeri and F. enigmaticus. EHMC was the most toxic to A. fischeri (EC₅₀ 0.868 mg L⁻¹ (15 min) and 1.06 mg L⁻¹ (30 min)) and the second most toxic to P. tricornutum. For F. enigmaticus, the lowest percentages of correct development resulted from 4-MBC exposure, with EC₅₀ of 0.836 mg L⁻¹. Overall, AVO induced low toxicity to every assessed species and OCTO was the least toxic for F. enigmaticus larvae. Considering the results obtained for F. enigmaticus, further larval development assays were performed with nZnO and EHMC under different light (light vs darkness) and temperature (20 and 25 °C) conditions, showing higher percentages of correct development at 25 °C, independently on light/darkness conditions. Under different temperature and photoperiod conditions, nZnO was more toxic than EHMC. Overall, nZnO and EHMC were among the most toxic UV filters tested and, when testing the effects of these UV-filters with temperature the results highlight that the impacts are liable to be lessened at higher temperatures (25 °C compared with 20 °C), in the case of this estuarine polychaete species. Nevertheless, further experiments are necessary to describe the effects of these two UV-filters at different organization levels, to study the toxicity of eventual degradation by-products and to provide more information on the combination of different stressors.
显示更多 [+] 显示较少 [-]Ecotoxicological screening of UV-filters using a battery of marine bioassays 全文
2021
Vieira Sanches, Matilde | Oliva, Matteo | De Marchi, Lucia | Cuccaro, Alessia | Puppi, Dario | Chiellini, Federica | Freitas, Rosa | Pretti, Carlo
The present study aimed to assess the toxicity of seven UV-filters: zinc oxide nanoparticles (nZnO, particle size <100 nm), titanium dioxide nanoparticles (nTiO2, primary particle size 21 nm), 2-ethylhexyl-4-methoxycinnamate (EHMC), 4-methylbenzylidene camphor (4-MBC), avobenzone (AVO), octocrylene (OCTO) and benzophenone-3 (BP-3) on three species: Aliivibrio fischeri (inhibition of bioluminescence), Phaeodactylum tricornutum (growth inhibition) and Ficopomatus enigmaticus (larval development success). Results showed nTiO2 to be the most toxic for P. tricornutum (EC50 0.043 mg L-1), while no effect was observed in A. fischeri and F. enigmaticus. EHMC was the most toxic to A. fischeri (EC50 0.868 mg L-1 (15 min) and 1.06 mg L-1 (30 min)) and the second most toxic to P. tricornutum. For F. enigmaticus, the lowest percentages of correct development resulted from 4-MBC exposure, with EC50 of 0.836 mg L-1. Overall, AVO induced low toxicity to every assessed species and OCTO was the least toxic for F. enigmaticus larvae. Considering the results obtained for F. enigmaticus, further larval development assays were performed with nZnO and EHMC under different light (light vs darkness) and temperature (20 and 25 °C) conditions, showing higher percentages of correct development at 25 °C, independently on light/darkness conditions. Under different temperature and photoperiod conditions, nZnO was more toxic than EHMC. Overall, nZnO and EHMC were among the most toxic UV filters tested and, when testing the effects of these UV-filters with temperature the results highlight that the impacts are liable to be lessened at higher temperatures (25 °C compared with 20 °C), in the case of this estuarine polychaete species. Nevertheless, further experiments are necessary to describe the effects of these two UV-filters at different organization levels, to study the toxicity of eventual degradation by-products and to provide more information on the combination of different stressors. | published
显示更多 [+] 显示较少 [-]Antibiotic-accelerated cyanobacterial growth and aquatic community succession towards the formation of cyanobacterial bloom in eutrophic lake water 全文
2021
Xu, Sijia | Jiang, Yunhan | Liu, Ying | Zhang, Jian
Antibiotics can stimulate the growth of model cyanobacterial species under pure culture conditions, but their influence on cyanobacterial blooms in natural aquatic ecosystems remains unclear. In this study, three commonly detected antibiotics (sulfamethoxazole, tetracycline, and ciprofloxacin) and their ternary mixture were proved to selectively stimulate (p < 0.05) the growth and photosynthetic activity of cyanobacteria in an aquatic microcosm at an environmentally relevant exposure dose of 300 ng/L under both oligotrophic and eutrophic conditions. Under the eutrophic condition, cyanobacteria reached a bloom density of 1.61 × 10⁶ cells/mL in 15 days without antibiotics, while the cyanobacteria exposed to tetracycline, sulfamethoxazole, ciprofloxacin, and their ternary mixture exceeded this bloom density within only 10, 8, 7, and 6 days, respectively. Principal coordinate analysis indicated that the antibiotic contaminants accelerated the prokaryotic community succession towards the formation of a cyanobacterial bloom by promoting the dominance of Microcystis, Synechococcus, and Oscillatoria under the eutrophic condition. After 15 days of culture, the antibiotic exposure increased the density of cyanobacteria by 1.38–2.31-fold and 2.28–3.94-fold under eutrophic and oligotrophic conditions, respectively. Antibiotic exposure generated higher stimulatory effects on cyanobacterial growth under the oligotrophic condition, but the antibiotic(s)-treated cyanobacteria did not form a bloom due to nutrient limitation. Redundancy analysis indicated that the three target antibiotics and their ternary mixture affected the prokaryotic community structure in a similar manner, while tetracycline showed some differences compared to sulfamethoxazole, ciprofloxacin, and the ternary antibiotic mixture with regard to the regulation of the eukaryotic community structure. This study demonstrates that antibiotic contaminants accelerate the formation of cyanobacterial blooms in eutrophic lake water and provides insights into the ecological effects of antibiotics on aquatic microbial communities.
显示更多 [+] 显示较少 [-]Associations between ambient fine particulate matter and child respiratory infection: The role of particulate matter source composition in Dhaka, Bangladesh 全文
2021
Sherris, Allison R. | Begum, Bilkis A. | Baiocchi, Michael | Goswami, Doli | Hopke, Philip K. | Brooks, W Abdullah | Luby, Stephen P.
Air pollution in the form of fine particulate matter (PM₂.₅) has been linked to adverse respiratory outcomes in children. However, the magnitude of this association in South Asia and sources of PM₂.₅ that drive adverse health effects are largely unknown. This study evaluates associations between short-term variation in ambient PM₂.₅ and incidence of pneumonia and upper respiratory infections among children in Dhaka, Bangladesh. We also perform an exploratory analysis of the PM₂.₅ source composition that is most strongly associated with health endpoints. We leveraged data from health surveillance of children less than five years of age between 2005 and 2014 in Kamalapur, Bangladesh, including daily physician-confirmed diagnoses of pneumonia and upper respiratory infection. Twice-weekly source-apportioned ambient PM₂.₅ measurements were obtained for the same period, and Poisson regression adjusted for time-varying covariates was used to estimate lagged associations between ambient PM₂.₅ and respiratory infection. We use complementary matching and stratification approaches to evaluate whether these associations vary across PM₂.₅ source composition. Total PM₂.₅ mass was associated with a modest increase in incidence of pneumonia, with a peak effect size two days after exposure (rate ratio = 1.032; 95% confidence interval = 1.008–1.056). We did not identify a significant association between PM₂.₅ and upper respiratory infection. Stratified and matching analyses suggested this association was stronger among days when ambient PM₂.₅ had a higher mass percent associated with brick kiln and fugitive lead emissions.: This study suggests that elevated ambient PM₂.₅ contributes to increased incidence of child pneumonia in urban Dhaka, and that this relationship varies among days with different source composition of PM₂.₅.
显示更多 [+] 显示较少 [-]Long-term air pollution and other risk factors associated with COVID-19 at the census tract level in Colorado 全文
2021
Berg, Kevin | Romer Present, Paul | Richardson, Kristy
Previous nationwide studies have reported links between long-term concentrations of fine particulate matter (PM2.5) and COVID-19 infection and mortality rates. In order to translate these results to the state level, we use Bayesian hierarchical models to explore potential links between long-term PM2.5 concentrations and census tract-level rates of COVID-19 outcomes (infections, hospitalizations, and deaths) in Colorado. We explicitly consider how the uncertainty in PM2.5 estimates affects our results by comparing four different PM2.5 surfaces from academic and governmental organizations. After controlling for 20 census tract-level covariates, we find that our results depend heavily on the choice of PM2.5 surface. Using PM2.5 estimates from the United States EPA, we find that a 1 μg/m³ increase in long-term PM2.5 concentrations is associated with a statistically significant 26% increase in the relative risk of hospitalizations and a 34% increase in mortality. Results for all other surfaces and outcomes were not statistically significant. At the same time, we find a clear association between communities of color and COVID-19 outcomes at the Colorado census tract level that is minimally affected by the choice of PM2.5 surface. A per-interquartile range (IQR) increase in the percent of non-African American people of color was associated with a 31%, 43%, and 56% increase in the relative risk of infection, hospitalization, and mortality respectively, while a per-IQR increase in the proportion of non-Hispanic African Americans was associated with a 4% and 7% increase in the relative risk of infections and hospitalizations. The current disagreement among the different PM2.5 estimates is a key factor limiting our ability to link environmental exposures and health outcomes at the census tract level. These results have strong implications for the implementation of an equitable public health response during the crisis and suggest targeted areas for additional air monitoring in Colorado.
显示更多 [+] 显示较少 [-]Transport and deposition of microplastic particles in saturated porous media: Co-effects of clay particles and natural organic matter 全文
2021
Li, Meng | Zhang, Xiangwei | Yi, Kexin | He, Lei | Han, Peng | Tong, Meiping
Natural colloids such as clays and natural organic matter (NOM) are universally present in environments, which could interact with microplastics (MPs) and thus alter the fate and transport of MPs in porous media. The co-effects of clays and NOM on MPs transport in saturated porous media were systematically explored at both low and high ionic strength (IS) conditions. Specifically, bentonite and humic acid (HA) were employed as representative clays and NOM. 5 mM NaCl and 1 mM CaCl₂ solutions were used as low IS conditions, while 25 mM NaCl and 5 mM CaCl₂ solutions were employed as high IS conditions. We found that formation of MPs-bentonite heteroaggregates had great effects on MPs transport under different conditions. Without HA, the small MPs-bentonite heteroaggregates formed under low IS increased MPs transport via serving as mobile carriers, while larger MPs-bentonite heteroaggregates formed at high IS led to the decreased MPs mobility. When both HA and bentonite were copresent in MPs suspension, we found that HA could inhibit the formation of larger sized MPs-bentonite heteroaggregates. Particularly, when the two types of natural colloids copresent in MPs suspensions, MPs transport behaviors were similar to those with only bentonite present in MPs suspensions at low IS, while MPs transport was greatly increased at high IS comparing with those only with bentonite in suspensions. Clearly, without HA in suspensions, bentonite played the dominant role on MPs transport under all examined conditions concerned in this study. Instead, when both HA and bentonite copresent in MPs suspensions, MPs transport was mainly controlled by bentonite at low IS, while both bentonite and HA had major contributions at high IS. The results showed that under solution conditions concerned in present study, MPs mobility in porous media would be greatly affected (either enhanced or inhibited) by the two types of natural colloids.
显示更多 [+] 显示较少 [-]The fate of anthropogenic Pb in soils; years after Pb terminated as a fuel additive; Northern Israel 全文
2021
Harlavan, Yehudit | Shirav, Moshe | Ilani, Shimon | Halicz, Ludwik | Yoffe, Olga
The source for Lead (Pb) pollution in soils from the heavily industrialized area located along the coast of the Eastern Mediterranean, Haifa Bay, Northern Israel, is studied using the lead isotopic composition. The uniqueness of the studied data set is that it includes samples of soils, road-wash, and storm-dust sampled for nearly three decades (1988–2017). Road-wash sediments are similar in both elemental and Pb isotopic composition to soils sampled in the same year (2010), indicating re-suspension of local soil, as its origin. Soils sampled during and before 1993 show no evidence for Pb contamination (bulk soil values), although Pb as an additive was already in use. Furthermore, soil overturns hinder the possibility to trace changes in the Pb isotopic composition with time in soils of the same location. Soils sampled from 1995–8 to 2013 were significantly dominated by Post-1992 Pb additive, pointing to Pb’s peak as an additive. Soils Pb and Zn Enrichment factors for most samples are below 5, and their anthropogenic source is likely common. Forest fire enriched Pb and Zn in the soil, and their Pb isotope compositions reflect this enrichment. Lead from the Hod Assaf recycling plant detected up to some 2.5 km away, and although not analyzed in the current study, dioxin-like compounds possibly accompanied Pb.
显示更多 [+] 显示较少 [-]The distribution and ecological effects of microplastics in an estuarine ecosystem 全文
2021
Hope, Julie A. | Coco, Giovanni | Ladewig, Samantha M. | Thrush, Simon F.
Coastal sediments, where microplastics (MPs) accumulate, support benthic microalgae (BMA) that contribute to ecosystem functions such as primary production, nutrient recycling and sediment biostabilization. The potential interactions between MPs, BMA and associated properties and functions remain poorly understood. To examine these interactions, a survey of 22 intertidal sites was conducted. MP abundance, size and a suite of MP diversity indices (based on color and shape) were determined from surface sediments alongside biochemical and physical properties. MPs were detected at all sites and dominated by polypropylene (34%), polyester (18%) and polyethylene (11%). Fragment and fiber dominance (16–92% and 6–81% respectively) and color-shape category diversity varied significantly by site. Distance-based linear models demonstrated that estuary-wide, mean grain size and mud were the best predictors of MP abundance-diversity matrices, but variance explained was low (9%). Relationships were improved when the data was split into sandy and muddy habitats. In sandy habitats (<8% mud), physical properties of the bed (mean grain size, mud content and distance from the estuary mouth) were still selected as predictors of MP abundance-diversity (14% variance explained); but a number of bivariate relationships were detected with biochemical properties such as BMA associated pigments and organic matter. In muddy habitats (>8% mud), porewater ammonium was lower when fiber abundance and overall MP diversity were higher. The inclusion of porewater ammonium, organic matter content and pheophytins alongside physical properties explained a greater percentage of the variance in MP abundance-diversity for muddy habitats (21%). The results highlight the importance of examining plastic shapes and MP categories in addition to abundance and emphasize that functionally different habitats should be examined separately to increase our understanding of MP-biota-function relationships.
显示更多 [+] 显示较少 [-]A novel method to analyze the spatial distribution and potential sources of pollutant combinations in the soil of Beijing urban parks 全文
2021
Liu, Jiyuan | Wu, Yihang | Zhou, Yongzhang | Li, Xingyuan | Yang, Shuhui | Chen, Yixiang | Qu, Yajing | Ma, Jin
Organic and inorganic pollutants are often co-sedimentary in soils and have the same sources in the urban environment. The identification of the sources and distribution of combined pollutants is a basic step in risk management. In this study, the levels of polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) were measured in urban park soils in Beijing. Bivariate local Moran’s I and positive matrix factorization (PMF) source apportionment were used to identify the spatial clustering patterns and potential sources of PAHs and HMs, as well as to ultimately define a pollution risk control area. The results revealed an obvious clustered distribution of PAHs and HMs in the park soils. High-high areas were defined as sites containing a complex mixture of pollutants, which were mainly located in the center and north of Beijing. High-low and low-high areas were located outside the city center but had the potential for combined pollution, and therefore require continuous attention. Bivariate local indicators of spatial association (LISA) enabled a more accurate analyses of the mechanism controlling the spatial distribution of PAH and HM combinations in urban parks. The source apportionment indicated that industrial and traffic emissions were the most important sources of the pollutant combinations in urban parks, with traffic emissions accounting for most of the pollution.
显示更多 [+] 显示较少 [-]