细化搜索
结果 901-910 的 1,546
Critical Loads of Acidity to Protect and Restore Acid-Sensitive Streams in Virginia and West Virginia 全文
2012
Sullivan, Timothy J. | Cosby, Bernard J. | McDonnell, Todd C. | Porter, Ellen M. | Blett, Tamara | Haeuber, Richard | Huber, Cindy M. | Lynch, Jason
The purpose of the research described here is to apply a new approach for generating aquatic critical load (CL) and exceedance calculations for an important acid-sensitive region of the eastern USA. A widespread problem in regional aquatic acidification CL modeling for US ecosystems has been the lack of site-specific weathering data needed to derive accurate model CL estimates. A modified version of the steady-state water chemistry CL model was applied here to estimate CL and exceedances for streams throughout acid-sensitive portions of Virginia and West Virginia. A novel approach for estimating weathering across the regional landscape was applied, based on weathering estimates extracted from a well-tested, process-based watershed model of drainage water acid–base chemistry and features of the landscape that are available as regional spatial data coverages. This process allowed extrapolation of site-specific weathering data from 92 stream watersheds to the regional context in three ecoregions for supporting CL calculations. Calculated CL values were frequently low, especially in the Blue Ridge ecoregion where one-third of the stream length had CL < 50 meq/m²/year to maintain stream ANC at 50 μeq/L under steady-state conditions. About half or more of the stream length in the study region was in exceedance of the CL for long-term aquatic resource protection under assumed nitrogen saturation at steady state. Land managers and air quality policy makers will need this information to better understand responses to air pollution emissions reductions and to develop ecoregion-specific air pollution targets.
显示更多 [+] 显示较少 [-]Analysis of Acid Alizarin Violet N Dye Removal Using Sugarcane Bagasse as Adsorbent 全文
2012
Mitter, Eduardo Kovalski | dos Santos, Graziely Cristina | de Almeida, Érica Janaína Rodrigues | Morão, Luana Galvão | Rodrigues, Heide Dayane Prates | Corso, Carlos Renato
With the development of the textile industry, there has been a demand for dye removal from contaminated effluents. In recent years, attention has been directed toward various natural solid materials that are capable of removing pollutants from contaminated water at low cost. One such material is sugarcane bagasse. The aim of the present study was to evaluate adsorption of the dye Acid Violet Alizarin N with different concentrations of sugarcane bagasse and granulometry in agitated systems at different pH. The most promising data (achieved with pH 2.5) was analyzed with both Freundlich and Langmuir isotherms equations. The model that better fits dye adsorption interaction into sugarcane bagasse is Freundlich equation, and thus the multilayer model. Moreover, a smaller bagasse granulometry led to greater dye adsorption. The best treatment was achieved with a granulometry value lower than 0.21 mm at pH 2.50, in which the total removal was estimated at a concentration of 16.25 mg mL−1. Hence, sugarcane bagasse proves to be very attractive for dye removal from textile effluents.
显示更多 [+] 显示较少 [-]Feasibility of Different Bioremediation Strategies for Treatment of Clayey and Silty Soils Recently Polluted with Diesel Hydrocarbons 全文
2012
Moliterni, E. | Rodriguez, L. (Luis) | Fernández, F. J. | Villaseñor, J.
Bioremediation strategies, including biostimulation, exogenous bioaugmentation and autochthonous bioaugmentation, were evaluated to determine their ability to degrade petroleum hydrocarbons in two recently polluted agricultural soils, one with a clayey texture and a silty loam soil. It was hypothesized in this work that the bioavailability of the pollutant may depend on the soil type, which would determine the biodegradation rate and the correct methodology to be used. The soils were artificially contaminated with diesel fuel, and several soil–water suspension batch microcosm experiments were conducted to observe the bioremediation process. The inocula used in the experiments included an autochthonous soil consortium and an exogenous consortium that had been acclimated to diesel consumption. The clayey soil desorbed diesel quickly, while the silty soil, with a higher organic content, did not. Hydrocarbon availability was limited in the latter case. After 48 h of treatment, the diesel removal efficiency in the clayey soil was clearly higher than that in the silty soil. However, after 11 days, the efficiencies were similar, and more than 95% of the diesel was biodegraded in most experiments. According to the efficiency and bioavailability analyses, the best methodology to bioremediate the silty soil was biostimulation with the native consortium. In contrast, bioaugmentation with a combination of native and exogenous consortia was chosen to treat the clayey soil. The results of this study suggest that when pollutants are easily available, bioaugmentation can successfully remediate the pollution. However, when availability is limited, biostimulation can be more efficient.
显示更多 [+] 显示较少 [-]Dissolved Organic Carbon in Association with Water Soluble Nutrients and Metals in Soils from Lake Okeechobee Watershed, South Florida 全文
2012
Yang, Y. G. | He, Z. L. | Wang, Y. B. | Liu, Y. L. | Liang, Z. B. | Fan, J. H. | Stoffella, P. J.
Water quality of Lake Okeechobee has been a major environmental concern for many years. Transport of dissolved organic matter (DOM) in runoff water from watershed is critical to the increased inputs of nutrients (N and P) and metals (Cu and Zn). In this study, 124 soil samples were collected with varying soil types, land uses, and soil depths in Lake Okeechobee watershed and analyzed for water-extractable C, N, P, and metals to examine the relationship between dissolved organic carbon (DOC) and water soluble nutrients (N and P) and metals in the soils. DOC in the soils was in 27.64–400 mg kg⁻¹ (69.30 mg kg⁻¹ in average) and varied with soil types, land uses, and soil depth. The highest water-extractable DOC was found in soils collected in sugar cane and field crops (277 and 244 mg kg⁻¹ in average, respectively). Water soluble concentrations of N and P were in the range of 6.46–129 and 0.02–60.79 mg kg⁻¹, respectively. The ratios of water-extractable C/N and C/P in soils were in 0.68–12.52 (3.23 in average) and 3.19–2,329 (216 in average), and varied with land uses. The lowest water-extractable C/N was observed in the soils from dairy (1.66), resident (1.79), and coniferous forest (4.49), whereas the lowest water-extractable C/P was with the land uses of dairy (13.1) and citrus (33.7). Therefore, N and P in the soils under these land uses may have high availability and leaching potential. The concentrations of water soluble Co, Cr, Cu, Ni, and Zn were in the ranges of < method detection limit (MDL)–0.33, <MDL–0.53, 0.04–2.42, <MDL–0.71, and 0.09–1.13 mg kg⁻¹, with corresponding mean values of 0.02, 0.01, 0.50, 0.07, and 0.37 mg kg⁻¹, respectively. The highest water soluble Co (0.10 mg kg⁻¹), Cr (0.26 mg kg⁻¹), Ni (0.31 mg kg⁻¹), and Zn (0.80 mg kg⁻¹) were observed in soils under the land use of sugar cane, whereas the highest Cu (1.50 mg kg⁻¹) was with field crop. The concentration of DOC was positively correlated with total organic carbon (TOC) (P <0.01), water soluble N (P <0.01), electrical conductivity (EC, P <0.01), and water soluble Co, Cr, Ni, and Zn (P <0.01), and Cu (P <0.05), whereas water soluble N was positively correlated with water soluble P, Cu, and Zn (P <0.01) in soils. These results indicate that the transport of DOC from land to water bodies may correlate with the loss of macro-nutrients (N, P), micro-nutrients (Cu, Zn, and Ni), and contaminants (Cr and Co) as well.
显示更多 [+] 显示较少 [-]High Variability in Sediment Characteristics of a Neotropical Stream Impacted by Surface Mining and Gully Erosion 全文
2012
Nascimento, Francisco L. | Boëchat, Iola G. | Teixeira, Alexandre O. | Gücker, Björn
This study examined patterns of stream sediment granulometry, organic matter (OM) and metal concentration, and surface water characteristics in a catchment in the Brazilian Iron Quadrangle that is highly impacted by surface iron mining and gully erosion. Sediment granulometry indicated fine sediment deposition at impacted stream sites, i.e., tendencies towards bimodal particle size distributions with an additional peak in the sand fraction at impacted stream sites that did not occur at pristine reference sites, as well as towards smaller mean sediment particle sizes at impacted sites than at reference sites. Impacted sites also had significantly lower sediment OM contents than reference sites. Sediment heavy metal and arsenic concentrations did not differ between impacted and reference sites and were generally below published target or threshold effect concentrations. Impacts on surface water characteristics occurred only locally at a site that received tailings pond effluent from an iron mine and had very low pH and conductivity values. Sediment characteristics exhibited substantial spatial variability in the studied tropical catchment, showing that land use impacts can hardly be detected in routine monitoring and impact assessment studies that adopt a before–after control-impact approach and do not consider pristine reference streams. These results underline the importance of high-resolution and long-term sediment monitoring as well as integrated basin-scale sediment management programs.
显示更多 [+] 显示较少 [-]Study of an Amphoteric Surfactant in a Soil Decontamination Process Using ANS Enhanced Fluorescence: Micellar Behavior and Dosing in Synthetic and Soil Solutions 全文
2012
Castellazzi, Pascal | Mercier, Guy | Blais, Jean-François
Cocamidopropyl hydroxysultaine (CAS) has been used in a pilot plant study as a biodegradable surfactant for the extraction of polycyclic aromatic hydrocarbons (PAHs) and lead (Pb) from contaminated soils. The soil treatment has been done in flotation cells with a concentration of 0.20 g CAS L−1 in saline conditions (3 M NaCl) and using a pulp density of 20% (w/w). The process integrates the recirculation of the liquid phases separated from the soil by centrifugation or filtration. Thus, it was necessary to understand CAS-PAHs micellar behavior and to follow the behavior and the fate of the surfactant in the process. 1-8-anilino-naphthalene sulfonate (ANS) is used as a fluorophor compound in the ANS enhanced fluorescence technique. A three-dimensional model detailing the change in the micellar behavior at high NaCl concentration and at different pH has been established. Fluorescence results of centrifuged soil matrix containing CAS have been compared to the results from synthetic solutions assays. A method allowing an accurate titration of the CAS has been developed by using the exact same matrix of the soil as the tested samples for the preparation of the calibration curves. The study of the surfactant concentration in the process has been performed and allows the adjustment of the CAS concentration in the recirculated water.
显示更多 [+] 显示较少 [-]Fate of Macronutrients in Water Treatment of Digestate Using Vibrating Reversed Osmosis 全文
2012
Vaneeckhaute, C. | Meers, E. | Michels, E. | Christiaens, P. | Tack, F. M. G.
In the transition from a fossil to a bio-based economy, it has become an important challenge to maximally recuperate and recycle valuable nutrients coming from manure and digestate processing. Membrane filtration is a suitable technology to separate valuable nutrients in easily transportable concentrates which could potentially be re-used as green fertilizers, in the meantime producing high quality water. However, traditional membrane filtration systems often suffer technical problems in waste stream treatment. The aim of this study was to evaluate the performance of vibratory shear enhanced processing (VSEP) in the removal of macronutrients (N, P, K, Na, Ca, Mg) from the liquid fraction of digestates, reducing their concentrations down to dischargeable/re-usable water. In addition, the re-use potential of VSEP-concentrates as sustainable substitutes for fossil-based mineral fertilizers was evaluated. Removal efficiencies for N and P by two VSEP filtration steps were high, though not sufficient to continuously reach the Flemish legislation criteria for discharge into surface waters (15 mg N l−1 and 2 mg P l−1). Additional purification can occur in a subsequent lagoon, yet further optimization of the VSEP filtration system is advised. Furthermore, concentrates produced by one membrane filtration step showed potential as N–K fertilizer with an economic value of <euro>6.3â±â1.1 t−1 fresh weight (FW). Further research is, however, required to evaluate the impact on crop production and soil quality by application of these new potential green fertilizers.
显示更多 [+] 显示较少 [-]Atmospheric Deposition and Inorganic Nitrogen Flux 全文
2012
Grigal, D. F.
Flux of dissolved inorganic nitrogen (DIN—primarily nitrate) from terrestrial ecosystems has been considered an important contributor to acidification of linked aquatic systems. The basis of this concern is the nitrogen (N) saturation hypothesis, positing that additions of N to terrestrial ecosystems in excess of biological requirements will result in DIN leaching. There is a consensus (implicit hypothesis) in the literature that atmospheric deposition of DIN in excess of a threshold of approximately 10 kg ha−1 year−1 leads to significant flux. Diverse data from USA indicate that DIN flux is highly variable both in space and time; the spatial uncertainty as measured by the pooled coefficient of variation is about 0.95, and the temporal (inter-year) uncertainty is about 0.75. The relationship between atmospheric deposition of DIN and annual flux is near-linear within the range of current deposition for US sites (≤8 kg ha−1 year−1 wet deposition). If wet and dry depositions are approximately equal, over 85 % of total DIN deposition is retained. This is nearly equal to the retention reported by the US Geological Survey National Water-Quality Assessment Program, which considered all nonpoint sources of N as inputs and both DIN and organic N as fluxes. Although input–output data have high uncertainty, the 85 % retention of atmospheric DIN by terrestrial watersheds casts doubt on its importance as a contributor to aquatic acidification. There is no obvious threshold of deposition leading to DIN leaching. The nitrogen saturation hypothesis may not fully explain N behavior in terrestrial ecosystems.
显示更多 [+] 显示较少 [-]Chemical and Biological Combined Treatments for the Removal of Pesticides from Wastewaters 全文
2012
Liberatore, Lolita | Bressan, Mario | Belli, Claudia | Lustrato, Giuseppe | Ranalli, Giancarlo
The combination of chemical oxidation (Fenton reaction) and biological treatment processes is a promising technique aiming to reduce recalcitrant wastewater loads. Preliminary tests were carried out on two widely used toxic and non-biodegradable pesticides, namely, Dazomet and Fenamiphos. The chemical reaction was employed as a pre-treatment step for the conversion of the substrates into oxygenated intermediates that were easily removed by means of a final biological treatment. In the combined action, the mineralisation activity of a selected microbial consortium was used to degrade residual volatile and non-volatile organic compounds into CO₂ and biomass.
显示更多 [+] 显示较少 [-]Hexavalent Chromium Dynamics and Uptake in Manure-Added Soil 全文
2012
Molla, K. | Dimirkou, A. | Antoniadis, V.
The soil dynamics of hexavalent Cr, a particularly mobile and toxic metal, is of a great environmental concern, and its availability to plants depends on various soil properties including soil organic matter. Thus, in a pot experiment, we added 50 mg Cr(VI) kg⁻¹ soil and studied Cr(VI) soil extractability and availability to spinach, where we applied both natural (zeolite), synthetic adsorptive materials (goethite and zeolite/goethite) and organic matter with farmyard manure. We found that, compared to the unamended control plants, dry matter weight in the Cr(VI)-added soil was greatly decreased to 17 % of the control, and height was decreased to 34 % of the control, an indication of Cr toxicity. Also, exchangeable Cr(VI) levels in soil decreased back to the unamended control even in the first soil sampling time. This was much faster than the exchangeable Cr(VI) levels in the mineral-added soil, where Cr(VI) levels were decreased to the levels of the unamended control in the third sampling time. The positive effect of organic matter was also indicated in the Cr quantity soil-to-plant transfer coefficient (in grams of Cr in plant per kilogram of Cr added in soil), a phyto-extraction index, which was significantly higher in the manure-amended (1.111 g kg⁻¹) than in the mineral-added treatments (0.568 g kg⁻¹). Our findings show that organic matter eliminates the toxicity of added Cr(VI) faster than the mineral phases do and enhances the ability of spinach to extract from soil greater quantities of Cr(VI) compared to mineral-added soils.
显示更多 [+] 显示较少 [-]