细化搜索
结果 911-920 的 7,214
Periodate activated by manganese oxide/biochar composites for antibiotic degradation in aqueous system: Combined effects of active manganese species and biochar
2022
Fang, Guoge | Li, Jialing | Zhang, Chen | Qin, Fanzhi | Luo, Hanzhuo | Huang, Cheng | Qin, Deyu | Ouyang, Zenglin
Developing efficient catalysts for oxytetracycline (OTC) degradation is an ideal strategy to tackle environmental pollution, and advanced oxidation processes (AOPs) have been widely used for its degradation. However, the studies on the activation of periodate (PI) by biochar and its composites in recent years have been scarcely reported. In this study, we focused on the degradation of OTC by PI activation with manganese oxide/biochar composites (MnₓOy@BC). Experimental results showed that the OTC degradation rate of MnₓOy@BC/PI system reached almost 98%, and the TOC removal efficiency reached 75%. Various characteristic analysis proved that PI could be activated efficiently by surface functional groups and manganese-active species (Mn(II), Mn(III), and Mn(IV)) on biochar, and various reactive species such as singlet oxygen (¹O₂), hydroxyl radical (∙OH), and superoxide radical (O₂∙⁻) can be observed via radical quenching experiments. Based on this, three degradation pathways were proposed. Furthermore, MnₓOy@BC and PI were combined to degrade environmental pollutants, which achieved excellent practical benefits and had great practical application potential. We hope that it can provide new ideas for advanced oxidation processes (AOPs) applying for wastewater treatment in the future.
显示更多 [+] 显示较少 [-]Subtle ecosystem effects of microplastic exposure in marine mesocosms including fish
2022
Foekema, Edwin M. | Keur, Martijn | Van Der Vlies, Liesbeth | Van Der Weide, Babeth | Bittner, Oliver | Murk, Albertinka J.
For two months, communities in 5.8 m3 outdoor marine mesocosms were exposed to 700 μm sphere-shaped polystyrene (PS) beads in dosages between 0.08 and 80 g/m2 . Barnacle (Semibalanus balanoides) densities were reduced at dosages of 0.8 g/m2 onwards without following a standard dose response curve. Lugworms and fish (Solea solea) ingested PS-beads without accumulating them. Lugworms (Arenicola marina) ingested the beads nonselective with the sediment without negative effects. The fish seemed to ingest the plastics only occasionally and at the final sampling day even in the highest dosed mesocosms (>30 beads/cm2) only 20% contained plastic. The condition index of the fish was slightly reduced in mesocosms with dosages of 0.8 g/m2 onwards. No difference in condition was found between fish with and without ingested plastic across mesocosms, illustrating the difficulty to relate plastic ingestion with condition from field data. The fish also ingested mollusks with shells exceeding the size of the PS-beads. Bivalves rejected the PS-beads as pseudofeces, without obvious impact on their condition. Mussel’s (Mytilus edulis) pseudofeces present an effective matrix to monitor microplastic presence in the water column. Species richness and diversity of the pelagic and benthic community were not affected although, a trend was found that the lower microplastic dosages had a positive effect on the total abundance of benthic invertebrates. In general, the observed effects at even the highest exposure concentrations were that subtle that they will be obscured by natural variation in the field. This underlines the importance of experiments under semi-field conditions for meaningful assessment of the ecological impact of microplastics. This study was performed with the real life, non-toxic, sphere-shaped polystyrene beads as were lost during an actual spill near the Dutch Wadden sea in January 2019. We recommend future mesocosm studies with other types of microplastics, including microfibers, weathered microplastics from sea, and smaller sized particles down to nanoplastics.
显示更多 [+] 显示较少 [-]Negative food dilution and positive biofilm carrier effects of microplastic ingestion by D. magna cause tipping points at the population level
2022
Amariei, G. | Rosal, Roberto | Fernandez-Pinas, Francisca | Koelmans, A.A.
Ingestion of microplastics by aquatic organisms is often harmful due to the dilution of their regular food with low-calorie microplastic particles, but can also be beneficial if nutritious biofilms are present on the microplastic surface. This begs the question: is ingestion of microplastic harmful or beneficial and can the net effect of the two mechanisms be quantified? Here, we quantified these harmful and beneficial effects on Daphnia magna, using dose-response tests with clean and biofouled microplastic respectively, and determined the trade-off between these counteracting effects. A population model was developed to calculate the isoclines for zero population growth, separating the regime where adverse food dilution dominated from that where the beneficial biofilm vector mechanism dominated. Our results show that the organisms grew better when exposed to biofouled microplastic compared to pristine microplastic. Very good model predictions (R2 = 0.868–0.991) of the effects of biofouled microplastic were obtained based on literature parameter values, with optimization required only for the two sub-model parameters driving the dose-effect relationships for pristine microplastic. These results contradict previous sudies were only pristine microplastic were used and demonstrate that the ruling paradigm of unambiguously adverse microplastic effects is not ecologically justifiable.
显示更多 [+] 显示较少 [-]Source identification of pollution and health risks to metals in household indoor and outdoor dust: A cross-sectional study in a typical mining town, China
2022
Cao, Suzhen | Wen, Dongsen | Chen, Xing | Duan, Xiaoli | Zhang, Linlin | Wang, Beibei | Qin, Ning | Wei, Fusheng
Dust is regarded as an important pathway of heavy metal(loid)s to the human body. Health risks posed by metal(loid)s from household dust are of particular concern. However, the contamination and sources of heavy metal(loid)s in household dust environments, as well as source identification of health risks related to heavy metal(loid)s from household dust for vulnerable populations such as children, have not been thoroughly studied in China, particularly for the areas involved with industrial activities such as ore mining. Thus, a cross-sectional study was conducted in a rural area famous for Pb/Zn ore mining, to assess the pollution sources and health risks of heavy metal(loid)s from household indoor and outdoor dust and to identify the contribution of household dust to the health risks for children. The results indicated that household environment was heavily contaminated by metal(loid)s, which were mainly attributed to mining activity. Meanwhile, the indoor/outdoor ratio and the redundancy analysis indicated that there were other pollution sources in indoor environments such as coal combustion, materials for interior building and decoration. Vapor inhalation was the main exposure pathway for Hg, while ingestion was the predominant pathway for other metal(loid)s. Although the cancer risks were relatively low, the HIt from household indoor and outdoor dust (2.19) was about twice the acceptable limit (1) and was primarily from Pb (64.52%) and As (23.42%). Outdoor dust was a larger contributor to the HI of Sb, As, Cr, Cd, Zn and Pb, which accounted for 51.37%, 58.63%, 52.14%, 59.66%, 52.87% and 64.47%, respectively, and the HIt was mainly from outdoor dust (60.76%). These results indicated that non-cancer health risks were largely from outdoor dust exposure, and strengthened the notion that concern should be given to the potential health risks from metal(loid)s in household dust both originating from mining activity and indoor environmental sources.
显示更多 [+] 显示较少 [-]Mitigation effects of exogenous melatonin-selenium nanoparticles on arsenic-induced stress in Brassica napus
2022
Farooq, Muhammad Ahsan | Islam, Faisal | Ayyaz, Ahsan | Chen, Weiqi | Noor, Yamna | Hu, Weizhen | Hannan, Fakhir | Zhou, Weijun
Melatonin (MT) and selenium (Se) application known to decrease heavy metal uptake and toxicity in plants. By mixing the Se in MT medium a new complex MT-Se nanoparticles (MT-Se NPs) was synthesized and we investigated the role of MT-Se NPs on B. napus growth and tolerance against As stress. The MT-Se particles significantly enhanced the plant growth and other associated physiological attributes under As stress. The As treatment at 80 μM was more phytotoxic, however MT-Se NPs application resulted in a substantial increase in leaf chlorophyll fluorescence, biomass accumulation, and decreased ROS relative to As stressed plants. The use of MT-Se NPs to As stressed plants reduced photosynthetic inhibition and oxidative stress and attenuated the increase in MDA and H₂O₂ contents. The application of MT-Se NPs also boosted the antioxidant enzymes activities such as SOD, POD and CAT as well as the APX, GR and GSH activates under As stress. The results also showed MT-Se NPs treatments alleviated the growth inhibition induced by As and reduced the accumulation of As in leaves and roots of B. napus seedlings. Moreover, treatment with MT-Se NPs improved the plant growth more successfully than treatment of MT and Se alone. This study explored the mechanism of melatonin and selenium efficiency in the composition can be jointly encouraged to exert synergistic effects and boost plant enzymatic activities.
显示更多 [+] 显示较少 [-]Perfluorooctane sulfonate induces suppression of testosterone biosynthesis via Sertoli cell-derived exosomal/miR-9-3p downregulating StAR expression in Leydig cells
2022
Huang, Jiyan | Ren, Hang | Tan, Annie | Li, Ting | Wang, Hongxia | Jiang, Lianlian | Zheng, Shaokai | Qi, Han | Ji, Binyan | Wang, Xipei | Qu, Jianhua | Zhao, Jianya | Qiu, Lianglin
Perfluorooctane sulfonate (PFOS) is associated with male reproductive disorder, but the related mechanisms are still unclear. In this study, we used in vivo and in vitro models to explore the role of Sertoli cell-derived exosomes (SC-Exo)/miR-9-3p/StAR signaling pathway on PFOS-induced suppression of testosterone biosynthesis. Forty male ICR mice were orally administrated PFOS (0.5–10 mg/kg/bw) for 4 weeks. Bodyweight, organ index, sperm count, reproductive hormones were evaluated. Primary Sertoli cells and Leydig cells were used to delineate the molecular mechanisms that mediate the effects of PFOS on testosterone biosynthesis. Our results demonstrated that PFOS dose-dependently induced a decrease in sperm count, low levels of testosterone, and damage in testicular interstitium morphology. In vitro models, PFOS significantly increased miR-9-3p levels in Sertoli cells and SC-Exo, accompanied by a decrease in testosterone secretion and StAR expression in Leydig cells when Leydig cells were exposed to SC-Exo. Meanwhile, inhibition of SC-Exo or miR-9-3p by their inhibitors significantly rescued PFOS-induced decreases in testosterone secretion and the mRNA and protein expression of the StAR gene in Leydig cells. In summary, the present study highlights the role of the SC-Exo/miR-9-3p/StAR signaling pathway in PFOS-induced suppression of testosterone biosynthesis, advancing our understanding of molecular mechanisms for PFOS-induced male reproductive disorders.
显示更多 [+] 显示较少 [-]Metabolic response of earthworms (Pheretima guillemi) to silver nanoparticles in sludge-amended soil
2022
Li, Min | Ruan, Ling-Yu | Dang, Fei | Liu, Hai-Long | Zhou, Dong-Mei | Yin, Bin | Wang, Jun-Song
Silver nanoparticles (AgNPs) can enter soils via the application of sludge and pose risks to soil invertebrates. However, current knowledge regarding the toxicity of AgNPs at environmentally relevant concentration is insufficient, especially at the molecular level. Therefore, we examined the effects of low-level AgNPs (7.2 mg kg⁻¹, dry weight) on the bioaccumulation, pathology and metabolism of earthworms (Pheretima guillemi). After exposure for 28 d, earthworms were dissected into digestive system and the rest of the body to explore the response of different body parts to AgNPs. Ag concentration in the digestive system of exposed group (2.5 mg kg⁻¹, dry weight) was significantly higher than that of the control group (0.5 mg kg⁻¹, dry weight). AgNPs exposure had no significant effects on the survival and growth, but induced intestinal damage and metabolic interference to earthworms relative to the control. Metabolomics analysis showed that AgNPs exposure disturbed the glycerophospholipid metabolism, glutathione metabolism and energy metabolism in the digestive system and the energy metabolism in the rest of the body. AgNPs exposure also induced lipid peroxidation in the digestive system. The different metabolic responses between two body parts highlighted the importance of the uptake routes of Ag. These results provide a biochemical insight for the risk assessment of low-level AgNPs in terrestrial environment.
显示更多 [+] 显示较少 [-]Tissue distribution study of perfluorooctanoic acid in exposed zebrafish using MALDI mass spectrometry imaging
2022
Bian, Yu | He, Mu-Yi | Ling, Yun | Wang, Xiu-Juan | Zhang, Feng | Feng, Xue-Song | Zhang, Yuan | Xing, Shi-Ge | Li, Jie | Qiu, Xin | Li, Yu-Rui
Perfluorooctanoic acid (PFOA) as an emerging environmental contaminant, has become ubiquitous in the environment. It is of significance to study bioconcentration and tissue distribution of aquatic organisms for predicting the persistence of PFOA and its adverse effects on the environment and human body. However, the distribution of PFOA in different tissues is a complex physiological process affected by many factors. It is difficult to be accurately described by a simple kinetic model. In present study, a new strategy was introduced to research the PFOA distribution in tissues and estimate the exposure stages. Zebrafish were continuously exposed to 25 mg/L PFOA for 30 days to simulate environmental process. Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) method was used to monitor the spatio-temporal distribution of PFOA in zebrafish tissues. By analyzing the law of change obtained from the high spatial resolution MSI data, two different enrichment trends in ten tissues were summarized by performing curve fitting. Analyzing the ratio of two types of curves, a new “exposure curve” was defined to evaluate the exposure stages. With this model, three levels (mild, moderate, and deep pollution stage) of PFOA pollution in zebrafish can be simply evaluated.
显示更多 [+] 显示较少 [-]Graphene oxide-based nanomaterials for the treatment of pollutants in the aquatic environment: Recent trends and perspectives – A review
2022
Dayana Priyadharshini, S. | Manikandan, S. | Kiruthiga, R. | Rednam, Udayabhaskar | Babu, P Suresh | Subbaiya, R. | Karmegam, N. | Kim, Woong | Govarthanan, M.
Graphene oxide can be used to store energy, as electrodes and purify industrial and domestic wastewater as photocatalysts and adsorbents because of its remarkable thermal, electrical, and chemical capabilities. Toward understanding graphene oxide (GO) based nanomaterials considering the background factors, the present review study investigated their characteristics, preparation methods, and characterization processes. The removal of contaminants from wastewater has recently been a focus of attention for materials based on GO. Progress in GO synthesis and surface modification has shown that they can be used to immobilize enzymes. It is possible to immobilize enzymes with varying characteristics on graphene-oxide-based substrates without sacrificing their functioning, thus developing a new environmental remediation platform utilizing nano biocatalysts. GO doping and co-doping with a variety of heterogeneous semiconductor-based metal oxides were included in a brief strategy for boosting GO efficiency. A high band-gap material was also explored as a possibility for immobilization, which shifts the absorption threshold to the visible range and increases photoactivity. For water treatment applications, graphene-based nanomaterials were used in Fenton reactions, photocatalysis, ozonation, photo electrocatalysis, photo-Fenton, and a combination of photon-Fenton and photocatalysis. Nanoparticles made from GO improved the efficiency of composite materials when used for their intended applications. As a result of the analysis, prospects and improvements are clear, especially when it comes to scaling up GO-based wastewater treatment technologies.
显示更多 [+] 显示较少 [-]Assessment of PM2.5-related health effects: A comparative study using multiple methods and multi-source data in China
2022
Hou, Xiaoyun | Guo, Qinghai | Hong, Yan | Yang, Qiaowei | Wang, Xinkui | Zhou, Siyang | Liu, Haiqiang
In China, PM₂.₅ pollution has caused extensive death and economic loss. Thus, an accurate assessment of the spatial distribution of these losses is crucial for delineating priority areas for air pollution control in China. In this study, we assessed the PM₂.₅ exposure-related health effects according to the integrated exposure risk function and non-linear power law (NLP) function in 338 prefecture-level cities in China by utilizing online monitoring data and the PM₂.₅ Hindcast Database (PHD). Our results revealed no significant difference between the monitoring data and PHD (p value = 0.66 > 0.05). The number of deaths caused by PM₂.₅-related Stroke (cerebrovascular disease), ischemic heart disease, chronic obstructive pulmonary disease, and lung cancer at the national level estimated through the NLP function was 0.27 million (95% CI: 0.06–0.50), 0.23 million (95% CI: 0.08–0.38), 0.31 million (95% CI: 0.04–0.57), and 0.31 million (95% CI: 0.16–0.40), respectively. The total economic cost at the national level in 2016 was approximately US$80.25 billion (95% CI: 24.46–132.25). Based on a comparison of Z statistics, we propose that the evaluation results obtained using the NLP function and monitoring data are accurate. Additionally, according to scenario simulations, Beijing, Chongqing, Tianjin, and other cities should be priority areas for PM₂.₅ pollution control to achieve considerable health benefits. Our statistics can help improve the accuracy of PM₂.₅-related health effect assessments in China.
显示更多 [+] 显示较少 [-]