细化搜索
结果 921-930 的 7,995
Experimental warming alleviates the adverse effects from tropospheric ozone on two urban tree species 全文
2021
Xu, Sheng | Wang, Yijing | Zhang, Weiwei | Li, Bo | Du, Zhong | He, Xingyuan | Chen, Wei | Zhang, Yue | Li, Yan | Li, Maihe | Schaub, Marcus
Atmospheric warming and increasing tropospheric ozone (O₃) concentrations often co-occur in many cities of the world including China, adversely affecting the health status of urban trees. However, little information is known about the combined and interactive effects from increased air temperature (IT) and elevated O₃ (EO) exposures on urban tree species. Here, Ginkgo biloba and Populus alba ‘Berolinensis’ seedlings were subjected to IT (+2 °C of ambient air temperature) and/or EO (+2-fold ambient air O₃ concentrations) for one growing season by using open-top chambers. IT alone had no significant effect on physiological metabolisms at the early growing stage, but significantly increased photosynthetic parameters, antioxidative enzyme activities (P < 0.05). EO alone decreased physiological parameters except for increased oxidative stress. Compared to EO exposure alone, plants grown under IT and EO combined showed higher antioxidative and photosynthetic activity. There was a significant interactive effect between IT and EO on net photosynthetic rate, stomatal conductance, water use efficiency, the maximum quantum efficiency of PSII photochemistry, the actual quantum efficiency of PSII, enzyme activities, aboveground biomass and root/shoot ratio (P < 0.05), respectively. These results suggested that during one growing season, IT mitigated the adverse effect of EO on the tested plants. In addition, we found that G. biloba was more sensitive than P. alba ‘Berolinensis’ to both IT and EO, suggesting that G. biloba may be a good indicator species for climate warming and air pollution, particularly under environmental conditions as they co-occur in urban areas.
显示更多 [+] 显示较少 [-]Insights on the inhibition of anaerobic digestion performances under short-term exposure of metal-doped nanoplastics via Methanosarcina acetivorans 全文
2021
Feng, Yue | Duan, Jian-Lu | Sun, Xiao-Dong | Ma, Jing-Ya | Wang, Qian | Li, Xiang-Yu | Tian, Wei-Xuan | Wang, Shu-Guang | Yuan, Xian-Zheng
Anaerobic digestion is an attractive waste treatment technology, achieving both pollution control and energy recovery. Though the inhibition of polystyrene nanoplastics in anaerobic granular sludge is well studied, no direct evidence has been found on the interaction of methanogens and nanoplastics. In this study, to characterize the location of nanoplastics, Pd-doped polystyrene nanoplastics (Pd-PS) were used to explore the inhibition mechanism of anaerobic sludge through short-term exposure to Methanosarcina acetivorans C2A. The results showed that Pd-PS inhibited the methanogenesis of the anaerobic sludge, and the methane production decreased as the Pd-PS increased, with a 14.29% reduction at the Pd-PS concentration of 2.36 × 10¹⁰ particles/mL. Also, Pd-PS interacted with the protein in the extracellular polymeric substances (EPS). Furthermore, Pd-PS inhibited the methanogenesis of M. acetivorans C2A without exhibiting an evident reduction in the growth. The inhibition of Pd-PS on methane was due to the inhibition of methane production related genes, MtaA and mcrA. These results provide potential explication for the inhibition of nanoplastics on the methanogens, which will fulfill the knowledge on the stability of methanogens under the short-term exposure of nanoplastics.
显示更多 [+] 显示较少 [-]Chronic pesticide exposure induced aberrant Notch signalling along the visual pathway in a murine model 全文
2021
Sanyal, Shalini | Law, Sujata
Pesticides aid in crop-protection against pests and increase yield. However, the xenobiotic stress exerted by pesticides leads to the deterioration of human and animal health. There is a lacuna in our knowledge about their impact on the ocular surface The present work sheds light on this gap by analysing the deterioration of visual acuity as a consequence of pesticide induced xenobiotic stress and Notch pathway dysregulation.Alteration in the expression of vital components of the notch signalling was analyzed along the visual pathway with special focus on its two terminals-the cornea and the visual cortex, by mimicking the on-field scenario regarding chronic pesticide exposure in experimental murine model (Swiss albino mice; Mus musculus). Various aspects were taken into consideration through visual acuity tests, histological evaluations, culture analyses, wound healing assays, flowcytometric evaluation, fluorescence microscopic studies etc. Complete dysregulation of key players of the Notch signalling pathway was observed in both: cells of the ocular surface as well as those in the murine visual cortex post pesticide exposure, indicating activities relating to cell proliferation, differentiation and wound healing in the pesticide exposed samples. Ultra-microscopic analyses corroborated our findings by revealing the loss of fine neural processes in the visual cortex of the pesticide exposed murine samples, thereby hinting at delayed perception to visual stimuli. In vivo evaluations of the functional capacity of the neuroanatomical structures along the visual pathway also confirmed that pesticide exposure leads to severe damage along the various parts of the visual pathway, right from the ocular surface to the visual cortex.
显示更多 [+] 显示较少 [-]Determination of local traffic emission and non-local background source contribution to on-road air pollution using fixed-route mobile air sensor network 全文
2021
Wei, Peng | Brimblecombe, Peter | Yang, Fenhuan | Anand, Abhishek | Xing, Yang | Sun, Li | Sun, Yuxi | Chu, Mengyuan | Ning, Zhi
Traffic-related air pollutants are major contributors to deteriorating urban air quality and pose a serious threat to pedestrians. From both a scientific and a regulatory standpoint, it is important and challenging to understand the contributions of local and non-local sources to accurately apportion specific sources such as traffic emissions contribution to on-road and near-road microenvironment air quality. In this study, we deployed mobile sensors on-board buses to monitor NO, NO₂, CO and PM₂.₅ along ten important routes in Hong Kong. The measurements include two seasons: April 2017 and July 2017. Two types of baseline extraction methods were evaluated and applied to separate local and background concentrations. The results show NO and NO₂ are locally dominated air pollutants in spring, constituting 72%–84% and 58%–71%, respectively, with large inter-road variation. PM₂.₅ and CO largely arise from background sources, which contribute 55%–65% and 73%–79% respectively. PM₂.₅ displays a homogeneous spatial pattern, and the contributions show seasonal change, decreasing during summer. Regional transport pollution is the primary contributor during high pollution episodes. Isolated vehicle plumes show highly skewed concentration distributions. There are characteristic polluted segments on routes and they are most evident at rush hours. The most polluted road segments (top 10%) cluster at tunnel entrances and congested points. Some of these polluted locations were observed in Hong Kong's Low Emission Zones and suggest limitations to the existing control strategies, which only address larger buses. Our work gives new insights in the importance of regional cooperation to improve background air pollution combined with local control strategies to improve roadside air quality in Hong Kong.
显示更多 [+] 显示较少 [-]Gridded emission inventory of organophosphorus flame retardants in China and inventory validation 全文
2021
He, Jian | Wang, Zhanxiang | Zhao, Liuyuan | Ma, Haibo | Huang, Juan | Li, Hongyu | Mao, Xiaoxuan | Huang, Tao | Gao, Hong | Ma, Jianmin
The bioaccumulation and adverse effects of organophosphorus flame retardants (OPFRs) on human health have become a global concern. China produces the largest amount of OPFRs globally and has the highest global market share. However, little is known about its emission level and environmental cycling, thereby causing uncertainties in the assessment of the environmental and health impacts of OPFRs. We developed a gridded annual OPFRs emission inventory at 1/4° longitude by 1/4° latitude resolution over China from 2014 to 2018. The results show that the annual OPFRs emissions increased from approximately 670 tons/yr in 2014 to 1000 tons/yr in 2018 in China. Higher OPFR emissions were identified in Jiangxi, Shandong, Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD), and Pearl River Delta (PRD). In total, 2400 tons of OPFRs were released into the atmosphere during the multi-year period, in which production accounting for 56.6% of total OPFR emissions in China. An atmospheric transport model, the Canadian Model for Environmental Transport of Organochlorine Pesticides (CanMETOP), was employed to verify the gridded emission inventory and elucidate the atmospheric environmental fate of OPFRs. Modeled OPFRs in the air and soil agreed reasonably well with observed data, suggesting that the developed inventory was, to a large extent, reliable. The modeled atmospheric and surface soil concentrations of OPFRs across China ranged from 0 to 119 ng/m³ and 0 to 428 ng/g, respectively. East China is subjected to more intense OPFR contamination than the rest of the country. The results provide a valuable dataset and assessment of OPFRs, which may aid policy-makers and the scientific community in developing emission control strategies and evaluating the health and environmental consequences of OPFRs in China.
显示更多 [+] 显示较少 [-]Relationship between life-time exposure to ambient fine particulate matter and carotid artery intima-media thickness in Australian children aged 11–12 years 全文
2021
Guo, Yue Leon | Ampon, Rosario D. | Hanigan, Ivan C. | Knibbs, Luke D. | Geromboux, Christy | Su, Ta-Chen | Negishi, Kazuaki | Poulos, Leanne | Morgan, Geoffrey G. | Marks, Guy B. | Jalaludin, Bin
Long-term exposure to air pollutants, especially particulates, in adulthood is related to cardiovascular diseases and vascular markers of atherosclerosis. However, whether vascular changes in children is related to exposure to air pollutants remains unknown. This study examined whether childhood exposure to air pollutants was related to a marker of cardiovascular risk, carotid intima–media thickness (CIMT) in children aged 11–12 years old. Longitudinal Study of Australian Children (LSAC) recruited parents and their children born in 2003–4. Among the participants, CheckPoint examination was conducted when the children were 11–12 years old. Ultrasound of the right carotid artery was performed using standardized protocols. Average and maximum far-wall CIMT, carotid artery distensibility, and elasticity were quantified using semiautomated software. Annual and life-time exposure to air pollutants was estimated using satellite-based land-use regression by residential postcodes. A total of 1063 children (50.4% girls) with CIMT data, serum cholesterol, and modeled estimates of NO₂ and PM₂.₅ exposure for the period 2003 to 2015 were included. The average and maximum CIMT, carotid distensibility, and elasticity were 497 μm (standard deviation, SD 58), 580 μm (SD 44), 17.4% (SD 3.2), and 0.48%/mmHg (SD 0.09), respectively. The life-time average concentrations of PM₂.₅ and NO₂ were 6.4 μg/m³ (SD 1.4) and 6.4 ppb (SD 2.4), respectively. Both average and maximum CIMT were significantly associated with average ambient PM₂.₅ concentration (average CIMT: +5.5 μm per μg/m³, 95% confidence interval, CI 2.4 to 8.5, and maximum CIMT: +4.9 μm per μg/m³, CI 2.3 to 7.6), estimated using linear regression, adjusting for potential confounders. CIMT was not significantly related to NO₂ exposure. Carotid artery diameter, distensibility, and elasticity were not significantly associated with air pollutants. We conclude that life-time exposure to low levels of PM₂.₅ in children might have measurable adverse impacts on vascular structure by age 11–12 years.
显示更多 [+] 显示较少 [-]Gathering at the top? Environmental controls of microplastic uptake and biomagnification in freshwater food webs 全文
2021
Krause, Stephan | Baranov, Viktor | Nel, Holly A. | Drummond, Jennifer D. | Kukkola, Anna | Hoellein, Timothy | Sambrook Smith, Gregory H. | Lewandowski, Joerg | Bonet, Berta | Packman, Aaron I. | Sadler, J. P. | Inshyna, Valentyna | Allen, Steve | Allen, Deonie | Simon, Laurent | Mermillod-Blondin, Florian | Lynch, Iseult
Gathering at the top? Environmental controls of microplastic uptake and biomagnification in freshwater food webs 全文
2021
Krause, Stephan | Baranov, Viktor | Nel, Holly A. | Drummond, Jennifer D. | Kukkola, Anna | Hoellein, Timothy | Sambrook Smith, Gregory H. | Lewandowski, Joerg | Bonet, Berta | Packman, Aaron I. | Sadler, J. P. | Inshyna, Valentyna | Allen, Steve | Allen, Deonie | Simon, Laurent | Mermillod-Blondin, Florian | Lynch, Iseult
Microplastics are ubiquitous in the environment, with high concentrations being detected now also in river corridors and sediments globally. Whilst there has been increasing field evidence of microplastics accumulation in the guts and tissues of freshwater and marine aquatic species, the uptake mechanisms of microplastics into freshwater food webs, and the physical and geological controls on pathway-specific exposures to microplastics, are not well understood. This knowledge gap is hampering the assessment of exposure risks, and potential ecotoxicological and public health impacts from microplastics.This review provides a comprehensive synthesis of key research challenges in analysing the environmental fate and transport of microplastics in freshwater ecosystems, including the identification of hydrological, sedimentological and particle property controls on microplastic accumulation in aquatic ecosystems. This mechanistic analysis outlines the dominant pathways for exposure to microplastics in freshwater ecosystems and identifies potentially critical uptake mechanisms and entry pathways for microplastics and associated contaminants into aquatic food webs as well as their risk to accumulate and biomagnify.We identify seven key research challenges that, if overcome, will permit the advancement beyond current conceptual limitations and provide the mechanistic process understanding required to assess microplastic exposure, uptake, hazard, and overall risk to aquatic systems and humans, and provide key insights into the priority impact pathways in freshwater ecosystems to support environmental management decision making.
显示更多 [+] 显示较少 [-]Gathering at the top? Environmental controls of microplastic uptake and biomagnification in freshwater food webs 全文
2021
Krause, Stefan | Baranov, Viktor | Nel, Holly, A | Drummond, Jennifer, D | Kukkola, Anna | Hoellein, Timothy | Sambrook Smith, Gregory, H | Lewandowski, Joerg | Bonet, Berta | Packman, Aaron, I | Sadler, Jon | Inshyna, Valentyna | Allen, Steve | Allen, Deonie | Simon, Laurent | Mermillod-Blondin, Florian | Lynch, Iseult | School of Geography, Earth and Environmental Sciences [Birmingham] ; University of Birmingham [Birmingham] | LEHNA - Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés [équipe E3S] (LEHNA E3S) ; Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE)-Centre National de la Recherche Scientifique (CNRS) | Department of Biology II, Ludwig Maximilians University, Munich ; Department of Biology II, | Loyola University Chicago ; Department of Biology | Department of Ecohydrology ; Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB) | Humboldt-Universität zu Berlin = Humboldt University of Berlin = Université Humboldt de Berlin (HU Berlin) | DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING NORTHWESTERN UNIVERSITY EVANSTON USA ; Partenaires IRSTEA ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | University of Strathclyde [Glasgow]
International audience | Microplastics are ubiquitous in the environment, with high concentrations being detected now also in river corridors and sediments globally. Whilst there has been increasing field evidence of microplastics accumulation in the guts and tissues of freshwater and marine aquatic species, the uptake mechanisms of microplastics into freshwater food webs, and the physical and geological controls on pathway-specific exposures to microplastics, are not well understood. This knowledge gap is hampering the assessment of exposure risks, and potential ecotoxicological and public health impacts from microplastics.This review provides a comprehensive synthesis of key research challenges in analysing the envi- ronmental fate and transport of microplastics in freshwater ecosystems, including the identification of hydrological, sedimentological and particle property controls on microplastic accumulation in aquatic ecosystems. This mechanistic analysis outlines the dominant pathways for exposure to microplastics in freshwater ecosystems and identifies potentially critical uptake mechanisms and entry pathways for microplastics and associated contaminants into aquatic food webs as well as their risk to accumulate and biomagnify.We identify seven key research challenges that, if overcome, will permit the advancement beyond current conceptual limitations and provide the mechanistic process understanding required to assess microplastic exposure, uptake, hazard, and overall risk to aquatic systems and humans, and provide key insights into the priority impact pathways in freshwater ecosystems to support environmental man- agement decision making.
显示更多 [+] 显示较少 [-]Prokaryotic community succession and assembly on different types of microplastics in a mariculture cage 全文
2021
Hou, Dandi | Hong, Man | Wang, Kai | Yan, Huizhen | Wang, Yanting | Dong, Pengsheng | Li, Daoji | Liu, Kai | Zhou, Zhiqiang | Zhang, Demin
Microplastics have emerged as a new anthropogenic substrate that can readily be colonized by microorganisms. Nevertheless, microbial community succession and assembly among different microplastics in nearshore mariculture cages remains poorly understood. Using an in situ incubation experiment, 16S rRNA gene amplicon sequencing, and the neutral model, we investigated the prokaryotic communities attached to polyethylene terephthalate (PET), polyethylene (PE), and polypropylene (PP) in a mariculture cage in Xiangshan Harbor, China. The α-diversities and compositions of microplastic-attached prokaryotic communities were significantly distinct from free-living and small particle-attached communities in the surrounding water but relatively similar to the large particle-attached communities. Although a distinct prokaryotic community was developed on each type of microplastic, the communities on PE and PP more closely resembled each other. Furthermore, the prokaryotic community dissimilarity among all media (microplastics and water fractions) tended to decrease over time. Hydrocarbon-degrading bacteria Alcanivorax preferentially colonized PE, and the genus Vibrio with opportunistically pathogenic members has the potential to colonize PET. Additionally, neutral processes dominated the prokaryotic community assembly on PE and PP, while selection was more responsible for the prokaryotic assembly on PET. The assembly of Planctomycetaceae and Thaumarchaeota Marine Group I taxa on three microplastics were mainly governed by selection and neutral processes, respectively. Our study provides further understanding of microplastic-associated microbial ecology in mariculture environments.
显示更多 [+] 显示较少 [-]Quantification of the sorption of organic pollutants to minerals via an improved mathematical model accounting for associations between minerals and soil organic matter 全文
2021
Cheng, Jie | Ye, Qi | Lu, Zhijiang | Zhang, Jiangjiang | Zeng, Lingzao | Parikh, Sanjai J. | Ma, Wanzhu | Tang, Caixian | Xu, Jianming | He, Yan
The retention of organic pollutant (OP) in soils is commonly attributed to interactions with soil organic matter (SOM), perhaps overlooking substantial involvement of soil minerals. In this study, 36 soil samples with far-ranging ratios of clay to organic carbon were used to examine contribution of minerals on soil sorption of pentachlorophenol (PCP) and phenanthrene (PHE). Sorption isotherms (n = 216) were fit individually using three typical sorption models, with the most fitted Kd values screened out for quantification of the net mineral contribution to total sorption via development of mathematical model accounting for associations between minerals and SOM. Two mineral-relevant parameters [adsorption distribution coefficient (Kmin) and mineral contribution index (MCI)] were simultaneously defined. Previously reported soil sorption data of PCP, PHE and butachlor (13, 12 and 46, respectively) were also extracted and included to improve the credibility of mathematic model. The average MCI values were calculated as 0.421, 0.405 and 0.512 in PCP, PHE and butachlor treated soils, respectively, very close to or even over than the minerals dominant critical value (0.5). This suggested the significant, or even predominant, contribution of minerals – as compared to SOM. Significant dependence of MCI with four conventional parameters of soil property further offered the possibility to roughly evaluate mineral contributions based on estimated threshold values of soil property parameters (especially TOC). This study provides an accessible approach for predicting the contribution of minerals in soil OP retention, especially highlighting their predominant roles vs. SOM in regulating OP removal in most of subsurface soil or contaminated brownfields where organic carbon content of soil was very low, that was not like what previously believed.
显示更多 [+] 显示较少 [-]In situ prepared algae-supported iron sulfide to remove hexavalent chromium 全文
2021
Wu, Jun | Zheng, Hao | Hou, Jun | Miao, Lingzhan | Zhang, Fang | Zeng, Raymond Jianxiong | Xing, Baoshan
The effects of algae on the removal of contaminant by iron sulfide (FeS) are still unknown. Chlorella vulgaris (CV), a remarkable algal specie, was used to prepare the CV-supported FeS (CV-FeS) and to investigate the role that CV plays in the removal of a heavy metal (i.e., hexavalent chromium (Cr(VI)) by FeS. The stabilized effect from algal extracellular polymeric substance (EPS) enhanced the reactivity of FeS due to the decrease of FeS aggregation, thus increasing Cr(VI) removal rate from 0.21 min⁻¹ to 0.79 min⁻¹. Furthermore, the strong buffering induced by the algal functional groups could effectively prevent the solution pH from increasing, which improved Cr(VI) removal because acidic solution facilitated Cr(VI) reduction by FeS. However, the complexing capacity from algal EPS made Fe(II) unavailable for Cr(VI) reduction, which led to 35% decrease of Cr(VI) removal. The Fe(II) was oxidized to α-FeOOH by Cr(VI) in the absence of CV, while the unreacted Fe(II) was detected as in the form of Fe(OH)₂ in CV-FeS. Cr(VI) was reduced to Cr(III) and S(-II) was oxidized to elemental sulfur (S₈) regardless of the CV. This work showed the different roles of algae in the removal of Cr(VI) by FeS and provided value information for the application of FeS in the polluted algae-containing water system.
显示更多 [+] 显示较少 [-]