细化搜索
结果 921-930 的 8,010
Associations of maternal soy product consumption and urinary isoflavone concentrations with neonatal anthropometry: A prospective cohort study 全文
2021
Chen, Yao | Li, Tao | Ji, Honglei | Wang, Xin | Sun, Xiaowei | Miao, Maohua | Wang, Yan | Wu, Qian | Liang, Hong | Yuan, Wei
Isoflavones (ISOs) are naturally occurring endocrine-disrupting compounds. Few human studies have evaluated the effects of ISO exposure on neonatal anthropometry. This study aimed to examine the associations of maternal soy product consumption and urinary ISO concentrations, including genistein, daidzein, glycitein, and equol, with neonatal anthropometry, based on a Chinese cohort study. In Shanghai-Minhang Birth Cohort Study, pregnant women at 12–16 weeks of gestation were recruited, and they completed a structured questionnaire to assess soy product consumption during pregnancy. They also provided a single spot urine sample for the ISO assay. Neonatal anthropometric indices (birth weight; arm, waist, and head circumference; and triceps, back, and abdominal skinfold thickness) were measured at birth. Multivariable linear regression analysis was performed among the 1188 mother-infant pairs to examine the associations between maternal soy product consumption and neonatal anthropometry. The same statistical model was applied to examine the associations between maternal ISO exposure and neonatal anthropometry among 480 mother-infant pairs. Neonate girls born to mothers who “sometimes” and “frequent” consumed soy products had 169.1 g (95% confidence interval [CI], −68.9–407.1) and 256.5 g (95% CI, 17.1–495.8) higher birth weight, respectively, than those born to mothers who “never” consumed soy products during pregnancy. We observed consistent associations between higher maternal urine ISO concentrations and increased anthropometric indices (birth weight, arm and waist circumference, and triceps and abdominal skinfold thickness) in neonate girls, while no association was observed among boys. The findings suggested that maternal dietary ISO intake during pregnancy is associated with fetal development in a sex-specific pattern. In addition, follow-up studies are required to evaluate whether the observed changes in anthropometric indices at birth are associated with health conditions later in life.
显示更多 [+] 显示较少 [-]The relationship between fluoride accumulation in tea plant and changes in leaf cell wall structure and composition under different fluoride conditions 全文
2021
Luo, Jinlei | Ni, Dejiang | Li, Chunlei | Du, Yaru | Chen, Yuqiong
Tea plant is capable of hyper-accumulating fluoride (F) in leaves, suggesting drinking tea may cause excessive F intake in our body and threaten the health. This study investigated the changes in the structure, composition, and F content in the leaf cell wall of the tea (Camellia sinensis) under different F conditions to demonstrate the role of cell wall in F enrichment in tea plants. The cell wall was shown as the main part for F accumulation (67%–92%), with most of F distributed in the pectin fraction (56%–71%). With increasing F concentration, a significant increase (p < 0.05) was observed in the F content of cell wall and its components, the level of cell wall metal ions (i.e. Cu, Mg, Zn, Al, Ca, Ba, Mn), as well as the content of total cell wall materials, cellulose, and pectin. Meanwhile, the level of Cu, Mg, Zn, pectin, and cellulose was significantly positively correlated with the F content in the leaf cell wall. F addition was shown to increase the fluorescence intensity of LM19 and 2F4 antibody-labeled low-methylesterified homogalacturonans (HGs), while decrease LM20-labeled high-methylesterified HGs, coupled with an increase in the activity and gene expression of pectin methyl esterases (PMEs) in tea leaves. All these results suggest that F addition can increase pectin content and demethylesterification, leading to increased absorption of metal cations and chelation of F in the cell wall through the action of metal ions.
显示更多 [+] 显示较少 [-]Combined toxicity assessment of myclobutanil and thiamethoxam to zebrafish embryos employing multi-endpoints 全文
2021
Shen, Weifeng | Yang, Guiling | Guo, Qi | Lv, Lu | Liu, Li | Wang, Xinquan | Lou, Bao | Wang, Qiang | Wang, Yanhua
It is necessary to understand the interactions between different pesticides in ecotoxicology because pesticides never appear as individual compounds but rather in combinations with other compounds. In this study, we planned to explicate the combined toxic effect of myclobutanil (MYC) and thiamethoxam (THI) on the zebrafish (Danio rerio) by adopting multiple biomarkers. Results unraveled that the 96-h LC₅₀ values of MYC to D. rerio at various life phases ranged from 5.2 to 10.3 mg L⁻¹, which were lower than those of THI ranging from 147 to 246 mg L⁻¹. Combinations of MYC and THI exhibited synergetic toxicity to zebrafish embryos. The activities of antioxidative enzymes (T-SOD, Cu/Zn-SOD and POD) and detoxification enzyme (GST) were obviously varied in most of the MYC, THI and combined exposures compared to the control. The mRNA expressions of eight genes (Cu-sod, cas3, il-8, cxcl, erα, crh, cyp17 and dio1) involved in antioxidation, apoptosis, immunity and endocrine were obviously altered in the combined exposure of MYC and THI compared to their individual exposures. Our findings hinted the threats when YMC and THI co-existed, which would be beneficial for the risk assessments of pesticide mixtures.
显示更多 [+] 显示较少 [-]Nematode traits after separate and simultaneous exposure to Polycyclic Aromatic Hydrocarbons (anthracene, pyrene and benzo[a]pyrene) in closed and open microcosms 全文
2021
Hedfi, Amor | Ben Ali, Manel | Hassan, Montaser M. | Albogami, Bander | Al-Zahrani, Samia S. | Mahmoudi, Ezzeddine | Karachle, Paraskevi K. | Rohal-Lupher, Melissa | Boufahja, Fehmi
The majority of experimental studies carried out to date, regarding the effects of pollutants on meiofauna have been conducted by means of closed systems, and rarely using open ones. The current work explored the impact of three Polycyclic Aromatic Hydrocarbons (PAHs), anthracene, pyrene and benzo[a]pyrene, applied alone or combined, on meiobenthic nematodes using both systems. The results revealed that single PAHs impacted the nematofauna similarly in closed or open systems with a higher toxicity observed for benzo[a]pyrene. However, the closed microcosms contaminated with PAHs became organically enriched, resulting in more non-selective deposit feeders and omnivores-carnivores. Taxonomic and functional effects related to combinations of PAHs were close to those of individual treatments in closed systems, however, for open ones, the outcomes were different. The caudal morphology influenced the response of taxa during their avoidance/endurance of hydrocarbons in open systems where the effects of PAHs mixtures appeared not only additive but also synergetic. Based on the results of the study, the use of open systems is preferred to closed ones as the research outcomes were more accurate and representing better conditions prevailing in nature.
显示更多 [+] 显示较少 [-]DEHP-elicited small extracellular vesicles miR-26a-5p promoted metastasis in nearby normal A549 cells 全文
2021
Qin, Yifei | Zhang, Jing | Avellán-Llaguno, Ricardo David | Zhang, Xu | Huang, Qiansheng
Small extracellular vesicles (sEV) are small lipid bilayer particles released by cells. sEV have been shown to play critical roles in intercellular communication. Di (2-ethylhexyl) phthalate (DEHP), widely used as plasticizers, has been detected in the environment and human beings. DEHP was found to exist in the air particles and showed pulmonary toxicity. However, there’s little knowledge about the role of sEV in mediating the toxicity of DEHP-induced lung toxicity. We hypothesized that sEV mediated the toxicity of DEHP through their cargo. To validate this, lung epithelial cells (A549) were exposed to various concentrations (0, 0.2, 2 and 20 μM) of DEHP for 48 h. sEV extracted from DEHP-exposed A549 cells were cultured with unexposed A549 cells. Results showed that DEHP induced the epithelial-mesenchymal transition (EMT) and promoted the migration and invasion ability of A549 cells. The number of released sEV significantly increased in the culture media in DEHP-exposed groups compared to unexposed groups. The sEV can enter the unexposed A549 cells and enhance its EMT and the ability of migration and invasion. Treatment with GW4869 in DEHP-exposed A549 cells almost blocked the effects of DEHP-elicited sEV in normal A549 cells. Sequencing and functional analysis showed that the enrichment of significantly differentially expressed sEV miRNAs were related to tumor etiology. MiR-26a-5p was significantly enriched in DEHP-elicited sEV. Inhibition of miR-26a-5p in DEHP-exposed cells led to the downregulation of miR-26a-5p in sEV, and thus abolished the effects of DEHP-elicited sEV in normal A549 cells, whereas overexpression of miR-26a-5p restored the effects. The transcription factors twist is one of the downstream targets in the effects of sEV-miR-26a-5p on EMT process. In all, our results showed that DEHP exposure promoted the secretion of miR-26a-5p in sEV, which subsequently enhanced the EMT, migration and invasion ability in neighboring normal cells via the twist.
显示更多 [+] 显示较少 [-]Microplastics and trace metals in fish species of the Gulf of Mannar (Indian Ocean) and evaluation of human health 全文
2021
Selvam, S. | Manisha, A. | Roy, Priyadarsi D. | Venkatramanan, S. | Chung, S.Y. | Muthukumar, P. | Jesuraja, K. | Elgorban, Abdallah M. | Ahmed, Bilal | Elzain, Hussam Eldin
The importance of microplastic (MPs) contamination in marine environments is reflected by increasing number of studies in fish species. Some even dedicated to the toxicological effects from the ingestion. Microplastics (MPs) and their trace metal composition were examined in the muscle and intestine of five commercially important fish species (i.e., Sufflamen fraenatus, Heniochus acuminatus, Atropus atropos, Pseudotriacanthus and Leiognathus brevirostris) from Thoothukudi at the Gulf of Mannar coast in south India. The abundance and morphology of MPs (size, shape, and texture) in muscle and intestinal were investigated by micro-Fourier Transform Infrared Spectroscopy (μ-FT-IR) and atomic force microscope (AFM). ICP-OES was used to investigate the adsorption/leaching of trace metals in microplastics in order to assess health risk for adults and children. Particles of 100–250 μm and white color dominated, and the mean abundances (items/100 g) of total MPs were more in Pseudotriacanthus (muscle: 51.2; intestine: 50.1) compared to Heniochus acuminatus (muscle: 9.6; intestine: 15), Leiognathus brevirostris (muscle: 12; intestine: 13.2) and Atropus atropus (muscle: 15.2; intestine: 44.1). Polyethylene (35.3%), polypropylene (27.2%), polyamide (nylon) (22.2%) and fiber (15.3%) represented the MPs present in muscles, and polyamide (nylon) (30.2%), polyethylene (28.1%), polypropylene (25.9%), and fiber (15.8%) composed the intestine MPs. We estimated possible consumption of 121–456 items of MPs/week by adults and about 19–68 items of MPs/week by children by considering the sizes of safe meals. Zn, Cu, Mn and Cr in these fish species reflected influence of the sewage waste. However, the non-carcinogenic risk evaluated through EDI, THQ, HI, and CR did not suggest any immediate health problem for the consumers.
显示更多 [+] 显示较少 [-](Im)mobilization of arsenic, chromium, and nickel in soils via biochar: A meta-analysis 全文
2021
Arabi, Zahra | Rinklebe, Jörg | El-Naggar, Ali | Hou, Deyi | Sarmah, Ajit K. | Moreno-Jiménez, Eduardo
Biochar is a promising immobilizing agent of trace elements (TEs) in contaminated soils. However, several contradictory results have been reported regarding the potential of biochar to immobilize arsenic (As), chromium (Cr), and nickel (Ni) in contaminated soils. We conducted a meta-analysis on the published papers since 2006 until 2019 to examine the effects of biochar on the chemical (im)mobilization of As, Cr, and Ni in contaminated soils and to elucidate the major factors that control their interactions with biochar in soil. We synthesized 48 individual papers comprised of a total of 9351 pairwise comparisons and used the statistical tool of Cohen's d as an appropriate effect size for the comparison between means. We found that the application of biochar often increased the As mobilization in soils. Important variables that modulated the biochar effects on As mobilization in soil were pyrolysis temperature and time (ranging between 8 and 16 times when T > 450 °C and t > 1hr), organic matter (7–16 times when SOM<3%) and further site conditions. In contrast to As, biochar efficiently immobilized Cr and Ni in contaminated soils. The extent of the Cr and Ni immobilization was determined by the feedstock (Cr: 7–18 times for agricultural residue-derived biochar; Ni: 13–32 times for woody biomass-derived biochar). Our meta-analysis provides a compilation on the potential of different types of biochar to reduce/increase the mobilization of As, Cr, and Ni in various soils and under different experimental conditions. This study provides important insights on factors that affect biochar's efficiency for the (im)mobilization of As, Cr, and Ni in contaminated soils. While biochar effectively immobilizes Cr and Ni, a proper management of As-polluted soils with pristine biochar is still challenging. This limitation might be overcome by modification of biochar surfaces to exhibit higher surface area and functionality and active sites for surface complexation with TEs.
显示更多 [+] 显示较少 [-]Impact of weather and emission changes on NO2 concentrations in China during 2014–2019 全文
2021
Shen, Yang | Jiang, Fei | Feng, Shuzhuang | Zheng, Yanhua | Cai, Zhe | Lyu, Xiaopu
Nitrogen dioxide (NO₂) is one of the most important air pollutants that highly affect the formation of secondary fine particles and tropospheric ozone. In this study based on hourly NO₂ observations from June 2014 to May 2019 and a regional air quality model (WRF−CMAQ), we comprehensively analyzed the spatiotemporal variations of NO₂ concentrations throughout China and in 12 urban agglomerations (UAs) and quantitatively showed the anthropogenic and meteorological factors controlling the interannual variations (IAVs). The ground observations and tropospheric columns show that high NO₂ concentrations are predominantly concentrated in UAs such as Beijing−Tianjin−Hebei (BTH), the Shandong Peninsula (SP), the Central Plain (CP), Central Shaanxi (CS), and the Yangtze River Delta (YRD). For different UAs, the NO₂ IAVs are different. The NO₂ increased first and then decreased in 2016 or 2017 in BTH, YRD, CS, and Cheng−Yu, and decreased from 2014 to 2019 in Harbin−Changchun, CP, SP, Northern Slope of Tianshan Mountain, and Beibu−Gulf, while increased slightly in the Pearl River Delta (PRD) and Hohhot−Baotou−Erdos−Yulin (HBEY). The NO₂ IAVs were primarily dominated by emission changes. The net wintertime decreases of NO₂ in BTH, Yangtze River Middle−Reach, and PRD were mostly contributed by emission reductions from 2014 to 2018, and the significant increase in the wintertime in HBEY was also dominated by emission changes (93%). Weather conditions also have an important effect on the NO₂ IAVS. In BTH and HBEY, the increases of NO₂ in winter of 2016 are mainly attributed to the unfavorable weather conditions and for the significant decreases in the winter of 2017, the favorable weather conditions also play a very important role. This study provides a basic understanding on the current situation of NO₂ pollution and are helpful for policymakers as well as those interested in the study of tropospheric ozone changes in China and downwind areas.
显示更多 [+] 显示较少 [-]Improvement of alfalfa resistance against Cd stress through rhizobia and arbuscular mycorrhiza fungi co-inoculation in Cd-contaminated soil 全文
2021
Wang, Xia | Fang, Linchuan | Beiyuan, Jingzi | Cui, Yongxing | Peng, Qi | Zhu, Shilei | Wang, Man | Zhang, Xingchang
Rhizobia and arbuscular mycorrhiza fungi (AMF) are important symbiotic microbes that are advantageous to plants growing in metal-contaminated soil. However, it remains unclear how inoculated microbes affect rhizosphere microbial communities or whether subsequent changes in rhizosphere microbiomes contribute to improving plant resistance under metal stress. This study investigated the effects of rhizobia and AMF inoculation on alfalfa resistance to Cd stress. The response of rhizosphere microbial communities to inoculation and its role in increasing alfalfa’ ability to cope with stress were further analyzed using high-throughput sequencing of 16S and ITS rRNA genes. Results showed that single rhizobia or AMF inoculation significantly improved alfalfa resistance to Cd stress, while their co-inoculation resulted in the greatest overall improvement. Improved resistance was reflected by the significant mitigation of Cd-induced lipid peroxidation and reactive oxygen species (ROS) stress caused by increases in antioxidant enzyme activities along with co-inoculation. Furthermore, co-inoculation significantly altered the rhizosphere microbial community structure by decreasing fungal community diversity and increasing bacterial community diversity. Results of partial least squares path modeling (PLS-PM) and variation partitioning analysis (VPA) showed that the rhizosphere bacterial community predominated over the fungal community with respected to improvements in resistance to Cd stress under the co-inoculation treatments. This improvement was specifically seen in the enrichment of certain key bacterial taxa (including Proteobacteria, Actinobacteria, Acidobacteria, and Chloroflexi) induced by the rhizobia and AMF co-inoculation, enhancing alfalfa’ ability to uptake rhizosphere nutrients and reduce its release of photosynthetically-derived carbon (C) into soil. Our findings revealed that the co-inoculation of multiple symbiotic microbes can assist plants to effectively cope with Cd stress, providing a greater understanding of rhizosphere bacterial taxa in the microbe-induced phytomanagement.
显示更多 [+] 显示较少 [-]Exposure to nanoparticles derived from diesel particulate filter equipped engine increases vulnerability to arrhythmia in rat hearts 全文
2021
Rossi, Stefano | Buccarello, Andrea | Caffarra Malvezzi, Cristina | Pinelli, Silvana | Alinovi, Rossella | Guerrero Gerboles, Amparo | Rozzi, Giacomo | Leonardi, Fabio | Bollati, Valentina | De Palma, Giuseppe | Lagonegro, Paola | Rossi, F. (Francesca) | Lottici, Pier Paolo | Poli, Diana | Statello, Rosario | Macchi, Emilio | Miragoli, Michele
Air pollution is well recognized as a central player in cardiovascular disease. Exhaust particulate from diesel engines (DEP) is rich in nanoparticles and may contribute to the health effects of particulate matter in the environment. Moreover, diesel soot emitted by modern engines denotes defective surfaces alongside chemically-reactive sites increasing soot cytotoxicity. We recently demonstrated that engineered nanoparticles can cross the air/blood barrier and are capable to reach the heart. We hypothesize that DEP nanoparticles are pro-arrhythmogenic by direct interaction with cardiac cells. We evaluated the internalization kinetics and the effects of DEP, collected from Euro III (DEPe3, in the absence of Diesel Particulate Filter, DPF) and Euro IV (DEPe4, in the presence of DPF) engines, on alveolar and cardiac cell lines and on in situ rat hearts following DEP tracheal instillation. We observed significant differences in DEP size, metal and organic compositions derived from both engines. DEPe4 comprised ultrafine particles (<100 nm) and denoted a more pronounced toxicological outcome compared to DEPe3. In cardiomyocytes, particle internalization is fastened for DEPe4 compared to DEPe3. The in-vivo epicardial recording shows significant alteration of EGs parameters in both groups. However, the DEPe4-instilled group showed, compared to DEPe3, a significant increment of the effective refractory period, cardiac conduction velocity, and likelihood of arrhythmic events, with a significant increment of membrane lipid peroxidation but no increment in inflammation biomarkers. Our data suggest that DEPe4, possibly due to ultrafine nanoparticles, is rapidly internalized by cardiomyocytes resulting in an acute susceptibility to cardiac electrical disorder and arrhythmias that could accrue from cellular toxicity. Since the postulated transfer of nanoparticles from the lung to myocardial cells has not been investigated it remains open whether the effects on the cardiovascular function are the result of lung inflammatory reactions or due to particles that have reached the heart.
显示更多 [+] 显示较少 [-]