细化搜索
结果 931-940 的 1,310
Polycyclic Aromatic Hydrocarbons in Soils from European High Mountain Areas 全文
2011
Quiroz, Roberto | Grimalt, Joan O. | Fernández, Pilar | Camarero, Lluis | Catalan, Jordi | Stuchlik, Evzen | Thies, Hansjoerg | Nickus, Ulrike
Polycyclic aromatic hydrocarbons (PAHs) were analyzed in 70 soils distributed in mountain areas such as Montseny (300–1,700 m), Pyrenees (1,500–2,900 m), Alps (1,100–2,500 m), and Tatras (1,400–1,960 m). Average total PAH concentrations, excluding retene and perylene, were about 400 ng/g in the Pyrenees and 1,300–1,600 ng/g in the other mountain ranges. No correlations between PAH concentrations and total organic carbon were observed. Retene was the major PAH in the Pyrenean soils of lower altitude. No altitudinal dependence was found between soil PAH concentrations and elevation for the whole dataset. However, in the Tatra soils a statistically significant correlation with altitude was observed involving higher concentrations at higher altitude. This correlation was due to the statistically significant altitudinal dependence of the more volatile PAHs. Another observed altitudinal trend concerned the benz[a]anthracene/(benz[a]anthracene + chrysene + triphenylene) and the benzo[a]pyrene/(benzo[a]pyrene + benzo[e]pyrene) ratios that exhibited a decrease in the more chemically labile compounds, benz[a]anthracene and benzo[a]pyrene, respectively, in the soils located at higher altitude. This observation is consistent with the expected higher photooxidation at higher mountain altitude.
显示更多 [+] 显示较少 [-]Have Meteorological Conditions Reduced NO2 Concentrations from Local Emission Sources in Gothenburg? 全文
2011
Tang, Lin | Rayner, David | Haeger-Eugensson, Marie
The risks of exceeding EU limit values for NO2 concentrations have increased in many European cities, and compliance depends strongly on meteorological conditions. This study focuses on meteorological conditions and their influences on urban background NO2 concentrations in the city of Gothenburg for 1999–2008. The relations between observed NO2 concentrations and meteorological conditions are constructed using two modelling approaches: multiple linear regression and synoptic regression. Both approaches assume no trends in emissions over the study period. The multiple linear regression model is established on observed local meteorological variables. The synoptic-regression model first groups days according to synoptic conditions using Lamb Weather Types and then uses linear regression on each group separately. A model comparison shows that linear regression model and synoptic-regression model perform satisfactory. The synoptic-regression model gives higher explained variance (R 2) against observations during the calibration years (1999–2007), in particular for the morning peak and afternoon–evening peak concentrations, but the improvement in the validation period is weak. The annual mean NO2 variations, and their trends during the study period, were assessed using the synoptic-regression model. The synoptic-regression model is able to explain 54%, 42% and 80% of the annual variability of daily mean, morning peak and afternoon–evening peak NO2 concentrations, respectively. The observed and modelled annual means of the daily mean and morning/afternoon–evening peak NO2 concentrations show decreasing trends from 1999 to 2008. All trends, except the trend in annual-average observed morning peak NO2 are statistically significant. The presence of trends in the modelled NO2 concentrations—even though emissions are assumed to be constant—leads us to conclude that weather and climate alone are responsible for a substantial fraction of the recent declines in observed NO2 concentrations in Gothenburg. Favourable meteorological conditions may have mitigated increases in local NO2 emissions during 1999 to 2008.
显示更多 [+] 显示较少 [-]Influence of the Sampling Period on the Deposition Time Series of Major Ions in Bulk Precipitation 全文
2011
Leppänen, Sirkka | Anttila, Pia
The influence of a change from daily to weekly sampling of bulk precipitation on the obtained deposition values was studied with parallel sampling for 8Â months at the station of Virolahti in 2004. Due to dry deposition, the deposition values of the whole period were found to be 5–70% higher from weekly sampling than from daily sampling, the biggest difference being for K+, Ca2+, Mg+ and Na+. The collection efficiencies of the summer sampler and the winter sampler compared to the standard rain gauge were studied from daily sampling in 1991–2003 and weekly sampling in 2004–2008. The performance was best in summer and in winter with rain samples (median value 85–88%), while the median value for daily snow samples was 72%. In winter, the total sum of precipitation collected in the daily sampler and the weekly sampler was 78% and 69%, respectively. The deficit in the weekly sampler in winter was concluded to be due to evaporation, while from the summer sampler no evaporation seemed to occur. Use of the precipitation amount measured by the standard rain gauge when calculating annual precipitation-weighted mean values gave higher mean concentrations than the use of the precipitation measured by the deposition sampler itself, the biggest difference of 8–11% being in the sea-salt ions Cl−, Mg+ and Na+. It was concluded that the concentration and deposition values measured by daily and weekly bulk sampling are incompatible, and should not be combined into the same time series.
显示更多 [+] 显示较少 [-]Natural Gradient Drift Tests for Assessing the Feasibility of In Situ Aerobic Cometabolism of Trichloroethylene and Evaluating the Microbial Community Change 全文
2011
Ha, Chulyoon | Kim, Namhee | Park, Hoowon | Kwon, Soo Youl | Lee, Heung-Shick | Hong, Ui Jeon | Park, Sunhwa | Kim, Sungpyo | Kim, Young
The objective of this study is to develop a method for using the single-well natural gradient drift test (SWNGDT) in the field to assess in situ aerobic cometabolism of trichloroethylene (TCE) and to analyze microbial community changes. The SWNGDT was performed in a monitoring well installed in a TCE-contaminated aquifer in Wonju, South Korea. The natural gradient drift biostimulation test (NGDBT) and surrogate test (NGDST) were performed by injecting dissolved solutes (bromide (a tracer), toluene (a growth substrate), ethylene (a nontoxic surrogate substrate to probe for TCE transformation activity), dissolved oxygen (DO, an electron acceptor), and nitrate (nutrient)) into the aquifer. Push–pull blocking tests (PPBT) were also performed to examine whether the monooxygenase of toluene oxidizers is involved in the degradation of toluene and the transformation of ethylene. Through the NGDBT, NGDST, and PPBT, we confirmed that the addition of toluene and oxygen in these field tests stimulated indigenous toluene utilizers to cometabolize aerobically TCE, with the following results: (1) the observed simultaneous utilization of toluene and DO; (2) the transformation of ethylene to ethylene oxide and propylene to propylene oxide; and (3) the transformation of TCE. Furthermore, the results of restriction fragment length polymorphism suggested that the microbial community shifts and the microbes capable of transforming TCE are stimulated by injecting the growth substrate, toluene.
显示更多 [+] 显示较少 [-]A Comparison of Inorganic Solid Wastes as Adsorbents of Heavy Metal Cations in Aqueous Solution and Their Capacity for Desorption and Regeneration 全文
2011
Zhou, Ya-Feng | Haynes, R. J.
The adsorption capacity of seven inorganic solid wastes [air-cooled blast furnace (BF) slag, water-quenched BF slag, steel furnace slag, coal fly ash, coal bottom ash, water treatment (alum) sludge and seawater-neutralized red mud] for Cd2+, Cu2+, Pb2+, Zn2+ and Cr3+ was determined at two metal concentrations (10 and 100 mgâL−1) and three equilibrium pH values (4.0, 6.0 and 8.0) in batch adsorption experiments. All materials had the ability to remove metal cations from aqueous solution (fly and bottom ash were the least effective), their relative abilities were partially pH dependant and adsorption increased greatly with increasing pH. At equimolar concentrations of added metal, the magnitude of sorption at pH 6.0 followed the general order: Cr3+â≥âPb2+â≥âCu2+â>âZn2+â=âCd2+. The amounts of previously sorbed Pb and Cd desorbed in 0.01 M NaNO3 electrolyte were very small, but those removed with 0.01 M HNO3, and more particularly 0.10 M HNO3, were substantial. Water treatment sludge was shown to maintain its Pb and Cd adsorption capability (pH 6.0) over eight successive cycles of adsorption/regeneration using 0.10 M HNO3 as a regenerating agent. By contrast, for BF slag and red mud, there was a very pronounced decline in adsorption of both Pb and Cd after only one regeneration cycle. A comparison of Pb and Cd adsorption isotherms at pH 6.0 for untreated and acid-pre-treated materials confirmed that for water treatment sludge acid pre-treatment had no significant effect, but for BF slag and red mud, adsorption was greatly reduced. This was explained in terms of residual surface alkalinity being the key factor contributing to the high adsorption capability of the latter two materials, and acid pre-treatment results in neutralization of much of this alkalinity. It was concluded that acid is not a suitable regenerating agent for slags and red mud and that further research and development with water treatment sludge as a metal adsorbent are warranted.
显示更多 [+] 显示较少 [-]Finger-Printing Biodegradation of Petroleum Contamination in Shallow Groundwater and Soil System Using Hydro-bio-geochemical Markers and Modelling Support 全文
2011
Fan, Wei | Yang, Y. S. | Du, X. Q. | Lu, Y. | Yang, M. X.
This study was conducted to determine the potential of in situ biodegradation and identify the geochemical and microbial processes of the petroleum-contaminated subsurface environment using integrated hydro-bio-geochemical markers so that the risk of contamination to subsurface environment can be better understood. The contamination process and corresponding bio-geo-chemistry were analysed in parallel with geochemical and multi-variant statistical modelling at a petroleum-contaminated site in the northeast China. The total petroleum hydrocarbon analysed in the monitoring wells and soil profile demonstrated heavy contamination with potential risk to human health and eco-environment. Further detailed analysis of petroleum fractions revealed a clear spatial variation of organic compositions in groundwater. It was evident that biodegradation and preferential biodegradability contributed considerably to the fraction distribution pattern, which can also be implicated by carbon and microbial respiration in the subsurface environment. The steady decrease in SO4 2- concentration, detection of S2-, and increase in pH and alkalinity (HCO3 -) in groundwater during the monitoring period demonstrated that sulphate reduction was the dominant biodegradation process in most contaminated zones. The results of statistical analysis further suggested that the hydro-geochemical environment was mainly controlled by the regional hydro-geochemical and sulphate reduction process associated closely with the total petroleum hydrocarbon. Knowledge from the comprehensive study provides useful insight on fate, transport and risk assessment of the petroleum contaminants in the shallow subsurface environment.
显示更多 [+] 显示较少 [-]Mercury Speciation in the Water of Minamata Bay, Japan 全文
2011
Matsuyama, Akito | Eguchi, Tomomi | Sonoda, Ikuko | Tada, Akihide | Yano, Shinichirou | Tai, Akira | Marumoto, Kohji | Tomiyasu, Takashi | Akagi, Hirokatsu
The speciation of mercury (Hg) in Minamata Bay (Japan) was studied over a 2-year period (2006–2008). Concentrations of dissolved total Hg, dissolved methylmercury (MeHg), particulate total Hg, and suspended solids were 0.43 ± 0.14 ng/l (mean ± standard deviation), 0.10 ± 0.06 ng/l, 3.04 ± 2.96 ng/l, and 5.94 ± 2.10 mg/l, respectively. Correlations between concentrations of particulate total Hg and suspended solids at four depths (surface: 0 m; mid-depth: −6 m, −10 m; and bottom +1 m layer) were only significant in the bottom +1 m layer. The mean dissolved MeHg concentration and the ratio of dissolved MeHg to dissolved total Hg were considerably higher in summer compared to other seasons. The data suggest that bottom sediment was not the sole source of MeHg, and that MeHg may be produced in the water column by the conversion of divalent Hg eluted from resuspended bottom sediment. The correlation between seawater characteristics such as salinity, temperature, dissolved oxygen (DO), and dissolved MeHg concentration indicates that Hg methylation could be influenced by the heterotrophic activity of microorganisms in the seawater. In particular, inverse correlations were observed between DO, salinity, and MeHg concentration. However, dissolved MeHg concentrations did not correlate with seawater characteristics such as pH or chlorophyll-a.
显示更多 [+] 显示较少 [-]Effect of Superphosphate and Arbuscular Mycorrhizal Fungus Glomus mosseae on Phosphorus and Arsenic Uptake in Lentil (Lens culinaris L.) 全文
2011
Ahmed, Fazel R Sadeque | Alexander, Ian J. | Mwinyihija, Mwinyikione | Killham, Kenneth
Arsenic (As)-contaminated irrigation water is responsible for high As levels in soils and crops in many parts of the world, particularly in the Bengal Delta, Bangladesh and West Bengal, India. While arbuscular mycorrhizal (AM) fungi markedly improve phosphorus (P) uptake, they can also alleviate metal toxicity. In this study, the effects of superphosphate and inoculation with the AM fungus Glomus mosseae on P and As uptake of lentil were investigated. Plant height, shoot dry weight, shoot/root P concentration, and shoot P content increased due to mycorrhizal inoculation. However, As concentration in roots/shoots and root As content were reduced, plant height, shoot dry weight, shoot/root P concentration/content, and root As concentration and content increased due to superphosphate application. Root P concentration decreased with increasing As concentration. It was apparent that As concentration and content in shoots/roots increased with increasing As concentration in irrigation water. Superphosphate interaction with G. mosseae reduced the role of mycorrhizal infection in terms of enhancing P nutrition and reducing uptake of potentially toxic As into plant parts. The role and relationship of mycorrhizal in respect of P nutrition and As remediation efficiency in plant parts was established. In conclusion, it was worth alluding to that lentil with AM fungal inoculation can reduce As uptake and improve P nutrition. However, in retrospect superphosphate increased P and As uptake and decreased the role of the mycorrhizal association. This resulted in stimulating increased P uptake while decreasing As uptake in lentil.
显示更多 [+] 显示较少 [-]Development of Regression-Based Models to Predict Fecal Bacteria Numbers at Select Sites within the Illinois River Watershed, Arkansas and Oklahoma, USA 全文
2011
David, Morgan M. | Haggard, Brian E.
The Illinois River Watershed is a multi-facet basin with ecological and economic importance to its local stakeholders in northwest Arkansas and northeast Oklahoma, USA. The numbers, transport and sources of fecal bacteria in streams was identified as a research priority of the USDA NRI Water and Watershed Program in 2006, and the objective of this study was to evaluate the relation between fecal bacteria and other measured physicochemical parameters in water samples collected from selected sites throughout the Illinois River Watershed. An existing database (i.e., National Water Information Systems, NWIS) from the US Geological Survey (USGS) was used in this project. The data obtained includes discharge, pH, temperature, dissolved oxygen, Escherichia coli (E. coli), fecal coliform, and fecal streptococci among several other physic-chemical parameters. A synthetic model, based on multi-regression analysis, was developed to predict fecal bacteria numbers at these selected sites based on available USGS NWIS data, and the multiple regressions were significant at almost every site for all three bacteria groups. However, the physicochemical parameters used in the equations were very different across sites and fecal bacteria groups, suggesting that the development of such predictive models is site and bacteria group specific even within one watershed.
显示更多 [+] 显示较少 [-]Cultivar-Specific Response of Soybean (Glycine max L.) to Ambient and Elevated Concentrations of Ozone Under Open Top Chambers 全文
2011
Singh, Shalini | Agrawal, S. B.
Two cultivars of soybean (Pusa 9814 and Pusa 9712) were investigated to evaluate the impact of ambient and elevated concentrations of ozone (O3) in a suburban site of India with and without application of 400 ppm ethylenediurea (EDU) in open top chambers having filtered air (FCs), non-filtered air (NFCs), and non-filtered plus 20 ppb O3 (NFCs + 20 ppb). Significant reductions were observed in various growth parameters, biomass accumulation, and yield attributes of soybean cultivars due to ambient O3 in NFCs and elevated concentration of O3 in NFCs + 20 ppb. Reductions in all parameters were of lower magnitude in plants treated with EDU as compared to non-EDU treated plants. Yield (weight of seeds plant−1) increased by 29.8% and 33% in Pusa 9712 and by 28.2% and 29.0% in Pusa 9814 due to EDU treatment in plants grown at ambient and elevated levels of O3, respectively. The results clearly showed that (a) EDU can be effectively used to assess phytotoxicity of O3 by providing protection against its deleterious effects, (b) EDU can be used for biomonitoring of O3 in areas experiencing its higher concentrations, and (3) EDU is more effective against higher concentrations of O3.
显示更多 [+] 显示较少 [-]