细化搜索
结果 931-940 的 7,290
In-depth exploration of toxicity mechanism of nanoscale zero-valent iron and its aging products toward Escherichia coli under aerobic and anaerobic conditions 全文
2022
Li, Long | Dong, Haoran | Lü, Yue | Zhang, Haoxuan | Li, Yangju | Xiao, Junyang | Xiao, Shuangjie | Jin, Zilan
The bacteria toxicity of nanoscale zero-valent iron (nZVI) can be changed during its application in water treatment but the toxicity mechanism is still not well understood, particularly under anaerobic conditions. Here, the toxicity of nZVI and its aging products towards Escherichia coli (E. coli) and the mechanisms of extracellular and intracellular reactive oxygen species (ROS) damage were deeply probed in the presence and absence of oxygen in ultrapure water. Under aerobic conditions, the ROS damage primarily caused by the generation of extracellular free •OH can be a major contributor to the toxicity of nZVI to E. coli. By contrast, in anaerobic nZVI treatment system, the intracellular •OH can be quenched by benzoic acid which is a cell permeable quencher and the electron spin resonance (ESR) signals of 5,5-dimethy-1-pyrroline (DMPO)- •OH were evidently observed in system with the addition of F⁻ which could desorb the surface •OH into solution. It indicated that the intracellular •OH adsorbed on the particle surface can also play an indispensable role in inactivating cells under anaerobic conditions. Moreover, nZVI can steeply decline the membrane potential, causing severe membrane disruption and therefore resulting in the stronger toxicity in anaerobic conditions. Furthermore, the chemical composition transformation of nZVI and generation of benign iron corrosion products (e.g., Fe₃O₄, γ-Fe₂O₃, γ-FeOOH) are mainly responsible for the reduced toxicity with the increasing aging time. These results provide insights into the extracellular and intracellular ROS damage occurred in aerobic and anaerobic nZVI treatment systems, offering more perspective to the risk assessment of nZVI application.
显示更多 [+] 显示较少 [-]The leaching behaviour of herbicides in cropping soils amended with forestry biowastes 全文
2022
James, Trevor K. | Ghanizadeh, Hossein | Harrington, Kerry C. | Bolan, Nanthi S.
Leaching of herbicides in cropping soils not only impacts the groundwater sources but also reduces their effect in controlling weeds. Leaching studies were carried out in two cropping soils and two forestry biowaste media, wood pulp and sawdust with two herbicides, atrazine and bromacil in a packed lysimeter with simulated rainfall. The hypothesis was that high organic matter forestry biowaste soil amendments reduce the leaching of herbicides through the soil profile. Results from the experimental setups varied due to the impact of the simulated rainfall on the surface structure of the media. Organic carbon content, pH and structure of the media were all factors which affected the leaching of the two herbicides. The hypothesis was true for wood pulp, but for sawdust, organic matter content had less bearing on the leaching of the herbicides than other over-riding factors, such as pH, that were media specific. In sawdust, its large particle size and related pore volume allowed preferential flow of herbicides. Overall, the data indicated that both forestry biowastes were retentive to herbicide leaching, but the effect was more pronounced with wood pulp than sawdust.
显示更多 [+] 显示较少 [-]Isotopic evidence for bioaccumulation of aerosol lead in fish and wildlife of western Canada 全文
2022
Chételat, John | Cousens, Brian | Hebert, Craig E. | Jung, Thomas S. | Mundy, Lukas | Thomas, Philippe J. | Zhang, Shuangquan
Lead (Pb) is a toxic element which is released as a result of anthropogenic activities, and Pb stable isotope ratios provide a means to distinguish sources and transport pathways in receiving environments. In this study, isotopes of bioaccumulated Pb (²⁰⁴Pb, ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb) were examined for diverse terrestrial and aquatic biota from three areas in western Canada: (a) otter, marten, gulls, terns, and wood frogs in the Alberta Oil Sands Region (AOSR), (b) fish, plankton, and gulls of Great Slave Lake (Yellowknife, Northwest Territories), and (c) wolverine from the Yukon. Aquatic and terrestrial biota from different habitats and a broad geographic area showed a remarkable similarity in their Pb isotope composition (grand mean ± 1 standard deviation: ²⁰⁶Pb/²⁰⁷Pb = 1.189 ± 0.007, ²⁰⁸Pb/²⁰⁷Pb = 2.435 ± 0.009, n = 116). Comparisons with Pb isotope ratios of local sources and environmental receptors showed that values in biota were most similar to those of atmospheric Pb, either measured in local aerosols influenced by industrial activities in the AOSR or in lichens (an aerosol proxy) near Yellowknife and in the Yukon. Biotic Pb isotope ratios were different from those of local geogenic Pb. Although the Pb isotope measurements could not unambiguously identify the specific anthropogenic sources of atmospheric Pb in biota, initial evidence points to the importance of fossil fuels currently used in transportation and power generation. Further research should characterize bioavailable chemical species of Pb in aerosols and important emission sources in western Canada.
显示更多 [+] 显示较少 [-]Estimate of hydrochlorofluorocarbon emissions during 2011–2018 in the Yangtze River Delta, China 全文
2022
Yu, Yan | Xu, Honghui | Yao, Bo | Pu, Jingjiao | Jiang, Yujun | Ma, Qianli | Fang, Xuekun | O'Doherty, Simon | Chen, Liqu | He, Jun
Hydrochlorofluorocarbons (HCFCs) are used as temporary substitutes for chlorofluorocarbons and other ozone-depleting substances because they have reduced ozone depletion and global warming potentials. The consumption and production of HCFCs are regulated via the Montreal Protocol and its amendments till 2013, with a complete phase-out being scheduled by 2030 for Article 5 parties (developing countries). To better understand the characteristics and emissions of HCFCs in the Yangtze River Delta (YRD), which is the largest metropolitan area in China, weekly flask samples were collected at the Lin'an regional background station located in the YRD from 2011 to 2018 and measured for four HCFCs (HCFC-22, HCFC-141b, HCFC-142b, and HCFC-124). The HCFC-132b and HCFC-133a measurements began in 2018. The ambient mixing ratios of the HCFCs exhibited higher concentrations and larger variabilities than those at the Shangri-la regional background station at similar latitudes in southwest China. The HCFC emissions in the YRD were estimated based on the tracer ratio method using CO and HFC-134a as tracers, and were comparable within the uncertainties. Our results are generally consistent with previous estimates obtained using top-down approaches. HCFC-22 and HCFC-141b contributed 52% ± 23% and 41% ± 24% of the total ODP-weighted (CFC-11-equivalent) HCFC emissions from the YRD, respectively, whereas HCFC-22 contributed the most (83% ± 36%) to the total CO₂-equivalent HCFC emissions from the YRD. The cumulative ODP-weighted and CO₂-equivalent emissions of HCFCs from the YRD accounted for 25% ± 15% and 20% ± 11% of the national corresponding totals, respectively, for 2011–2017. The HCFC-141b emissions from the YRD contributed approximately half of the total Chinese emissions. HCFC-133a emissions in the YRD accounted for approximately one-fifth of the global total in 2018. Thus, the YRD is an important contributor of HCFC emissions on national and global scales.
显示更多 [+] 显示较少 [-]A walk on the wild side: Wild ungulates as potential reservoirs of multi-drug resistant bacteria and genes, including Escherichia coli harbouring CTX-M beta-lactamases 全文
2022
Torres, Rita Tinoco | Cunha, Monica V. | Araujo, Débora | Ferreira, Helena | Fonseca, Carlos | Palmeira, Josman Dantas
A walk on the wild side: Wild ungulates as potential reservoirs of multi-drug resistant bacteria and genes, including Escherichia coli harbouring CTX-M beta-lactamases 全文
2022
Torres, Rita Tinoco | Cunha, Monica V. | Araujo, Débora | Ferreira, Helena | Fonseca, Carlos | Palmeira, Josman Dantas
Extended-spectrum β-lactamases (ESBL)-producing Enterobacterales have been classified as critical priority pathogens by the World Health Organization (WHO). ESBL are universally distributed and, in 2006, were firstly reported on a wild animal. Understanding the relative contributions of wild animals to ESBL circulation in the environment is urgently needed. In this work, we have conducted a nationwide study in Portugal to investigate the occurrence of bacteria carrying clinically significant antimicrobial resistance genes (ARG), using widely distributed wild ungulates as model species. A total of 151 antimicrobial resistant-Enterobacterales isolates were detected from 181 wild ungulates: 50% (44/88) of isolates from wild boar (Sus scrofa), 40.3% (25/62) from red deer (Cervus elaphus), 41.4% (12/29) from fallow deer (Dama dama) and 100% (2/2) from mouflon (Ovis aries subsp. musimon). Selected isolates showed a diversified resistance profile, with particularly high values corresponding to ampicillin (71.5%) and tetracycline (63.6%). Enterobacterales strains carried blaTEM, tetA, tetB, sul2, sul1 or dfrA1 ARG genes. They also carried blaCTX₋M-type genes, which are prevalent in human infections, namely CTX-M-14, CTX-M-15 and CTX-M-98. Strikingly, this is the first report of CTX-M-98 in wildlife. Almost 40% (n = 59) of Enterobacterales were multi-drug resistant. The diversity of plasmids carried by ESBL isolates was remarkable, including IncF, K and P. This study highlights the potential role of wild ungulates as environmental reservoirs of CTX-M ESBL-producing E. coli and in the spill-over of AMR bacteria and their determinants. Our findings suggest that wild ungulates are useful as strategic sentinel species of AMR in terrestrial environments, especially in response to potential sources of anthropogenic pollution, providing early warning of potential risks to human, animal and environmental health.
显示更多 [+] 显示较少 [-]A walk on the wild side: Wild ungulates as potential reservoirs of multi-drug resistant bacteria and genes, including Escherichia coli harbouring CTX-M beta-lactamases 全文
2022
Torres, Rita Tinoco | Cunha, Mónica V. | Araujo, Débora | Ferreira, Helena | Fonseca, Carlos | Palmeira, Josman Dantas
Extended-spectrum β-lactamases (ESBL)-producing Enterobacterales have been classified as critical priority pathogens by the World Health Organization (WHO). ESBL are universally distributed and, in 2006, were firstly reported on a wild animal. Understanding the relative contributions of wild animals to ESBL circulation in the environment is urgently needed. In this work, we have conducted a nationwide study in Portugal to investigate the occurrence of bacteria carrying clinically significant antimicrobial resistance genes (ARG), using widely distributed wild ungulates as model species. A total of 151 antimicrobial resistant-Enterobacterales isolates were detected from 181 wild ungulates: 50% (44/88) of isolates from wild boar (Sus scrofa), 40.3% (25/62) from red deer (Cervus elaphus), 41.4% (12/29) from fallow deer (Dama dama) and 100% (2/2) from mouflon (Ovis aries subsp. musimon). Selected isolates showed a diversified resistance profile, with particularly high values corresponding to ampicillin (71.5%) and tetracycline (63.6%). Enterobacterales strains carried blaTEM, tetA, tetB, sul2, sul1 or dfrA1 ARG genes. They also carried blaCTX-M-type genes, which are prevalent in human infections, namely CTX-M-14, CTX-M-15 and CTX-M-98. Strikingly, this is the first report of CTX-M-98 in wildlife. Almost 40% (n = 59) of Enterobacterales were multi-drug resistant. The diversity of plasmids carried by ESBL isolates was remarkable, including IncF, K and P. This study highlights the potential role of wild ungulates as environmental reservoirs of CTX-M ESBL-producing E. coli and in the spill-over of AMR bacteria and their determinants. Our findings suggest that wild ungulates are useful as strategic sentinel species of AMR in terrestrial environments, especially in response to potential sources of anthropogenic pollution, providing early warning of potential risks to human, animal and environmental health. | info:eu-repo/semantics/publishedVersion
显示更多 [+] 显示较少 [-]Impact of different manure-derived dissolved organic matters on the fate of arsenic-antibiotic in co-contaminated paddy soils 全文
2022
Yan, Mengmeng | Zhu, Changxiong | Song, Tingting | Li, Binxu | Su, Shiming | Li, Hongna
Manure application increases the transfer risk of antibiotic resistance to farmland. Especially, its impact remains unclear when it occurs in arsenic (As)-contaminated paddy soils, which is considered as a global environmental problem. In this work, we investigated the fate of antibiotic resistance genes (ARGs) in As-antibiotic co-contaminated paddy soils under the application of manure from different sources (pig manure, cow dung, and chicken manure). Differences in the aliphatic carbon and electron-donating capacities of these dissolved organic matters (DOM) regulated the transformation of iron and As by both biotic and abiotic processes. The regulation by pig manure was stronger than that by cow dung and chicken manure. DOM regulation increased the abundance of As-related functional genes (arsC, arrA, aioA, and arsM) in the soil and accelerated the transformation of As speciation, the highest proportion of As(III) being 45%–61%. Meanwhile, the continuous selection pressure provided by the highly toxic As(III) increased the risk of ARGs and mobile genetic elements (MGEs) via horizontal gene transfer. As-resistant bacteria, including Bacillus, Geobacter, and Desulfitobacterium, were finally considered as potential host bacteria for ARGs and MGEs. In summary, this study clarified the synergistic mechanism of As-antibiotic on the fate of ARGs in co-contaminated paddy soils, and provided practical guidance for the proper application of organic fertilizers.
显示更多 [+] 显示较少 [-]Volatility of Springtime ambient organic aerosol derived with thermodenuder aerosol mass spectrometry in Seoul, Korea 全文
2022
Kang, Hyun Gu | Kim, Youngjin | Collier, Sonya | Zhang, Qi | Kim, Hwajin
The volatilities of ambient organic aerosol (OA) components are important to forecasting OA formation with models. However, providing the OA volatility distribution inputs for models is challenging, and models often rely on measurements from chamber experiments. We measured the volatility of submicron ambient OA in Seoul during May/June of 2019 by connecting a thermodenuder to an Aerodyne Time-of-Flight Aerosol Mass Spectrometer (AMS). We calculated a volatility basis set (VBS) of the organic aerosol with a thermodenuder mass transfer model and data from the thermodenuder set to various temperatures (30–200 °C). We found a large discrepancy between the measured ambient VBS and a reference VBS used in air quality models, with the ambient organics being less volatile. The results suggest that a modeling study that tries to account for this discrepancy may be needed to identify the impact it has on modeling outcomes. Chamber experiments aiming to determine VBSs for specific chemical systems should address limitations caused by wall losses and incomplete modeling parameters.
显示更多 [+] 显示较少 [-]Endocrine disrupting chemicals impact on ovarian aging: Evidence from epidemiological and experimental evidence 全文
2022
Ding, Ting | Yan, Wei | Zhou, Ting | Shen, Wei | Wang, Tian | Li, Milu | Zhou, Su | Wu, Meng | Dai, Jun | Huang, Kecheng | Zhang, Jinjin | Chang, Jiang | Wang, Shixuan
Endocrine-disrupting chemicals (EDCs) are ubiquitous in daily life, but their harmful effects on the human body have not been fully explored. Recent studies have shown that EDCs exposure could lead to infertility, menstrual disorder and menopause, resulting in subsequent effects on female health. Therefore, it is of great significance to clarify and summarize the impacts of EDCs on ovarian aging for explaining the etiology of ovarian aging and maintaining female reproductive health. Here in this review, we focused on the impacts of ten typical environmental contaminants on the progression of ovarian aging during adult exposure, including epidemiological data in humans and experimental models in rodents, with their clinical phenotypes and underlying mechanisms. We found that both persistent (polychlorinated biphenyls, perfluoroalkyl and polyfluoroalkyl substances) and non-persistent (phthalates) EDCs exposure could increase an overall risk of ovarian aging, leading to the diminish of ovarian reserve, decline of fertility or fecundity, irregularity of the menstrual cycle and an earlier age at menopause, and/or premature ovarian insufficiency/failure in epidemiological studies. Among these, the loss of follicles can also be validated in experimental studies of some EDCs, such as BPA, phthalates, parabens and PCBs. The underlying mechanisms may involve the impaired ovarian follicular development by altering receptor-mediated pro-apoptotic pathways, inducing signal transduction and cell cycle arrest and epigenetic modification. However, there were inconsistent results in the impacts on fertility/fecundity, menstrual/estrous cycle and hormone changes response to different EDCs, and differences between human and animal studies. Our review summarizes the current state of knowledge on ovarian disrupters, highlights their risks to ovarian aging and identifies knowledge gaps in humans and animals. We therefore propose that females adopt healthy lifestyle changes to minimize their exposure to both persistent and non-persistent chemicals, that have the potential damage to their reproductive function.
显示更多 [+] 显示较少 [-]Accumulation capability for cesium differs among bacterial species: A comprehensive study using bacteria isolated from freshwater and coastal sediment 全文
2022
Li, Jiefeng | Wang, Yajie | Li, Wenjiao | Bhat, Sartaj Ahmad | Wei, Yongfen | Deng, Zhiyi | Hao, Xiaodi | Li, Fusheng
The fate and behavior of radioactive cesium (Cs) in the water environment are of great concern. The involvement of bacteria regarding their accumulation capability for this element is the most fundamental factor that needs to be clarified even for exploring the interactions between many environmental factors that involve together in governing the transport and distribution of Cs. As the first systematical study that aimed to evaluate the accumulation capability of environmental bacteria for Cs, bacteria in the sediment of a freshwater reservoir and coastal water environment were isolated and multiplied for contact experiment with Cs under different temperature conditions (5, 25, and 35 °C). The accumulation concentration of Cs in bacteria from freshwater sediment varied in 3.95 × 10⁻⁶ to 5.68 × 10⁻⁴ng-Cs/cell, and that from coastal sediment in 1.52 × 10⁻⁶ to 7.41 × 10⁻⁴ng-Cs/cell, indicating obvious differences among bacterial species. Bacteria of coastal sediment possessed higher accumulation capability for Cs than bacteria from freshwater sediment, and temperature dependency was confirmed for bacteria from coastal sediment. The findings of this study have great reference value for better understanding and controlling the fate and behavior of radioactive Cs associated with bacteria in the water environment.
显示更多 [+] 显示较少 [-]Mechanism of the improved Fe(III)/persulfate reaction by gallic acid for ibuprofen degradation 全文
2022
Li, Linyi | Zheng, Danqing | Gu, Xinyi | Sun, Chengju | Liu, Yankun | Dong, Wenbo | Wu, Yanlin
Gallic acid (GA), a natural plant polyphenol, was applied as amendment of Fe(III)/persulfate (PS) system for ibuprofen (IBP) degradation in this study. The impacts of all agentia (GA, Fe(III), PS) concentration and initial pH values on IBP removal efficiency were investigated, and their corresponding observed pseudo-first-order rate constants (kₒbₛ) were calculated. The addition of GA has significantly improved elimination efficiency of IBP due to the enhanced Fe(III)/Fe(II) cycle. Electron paramagnetic resonance (EPR) results confirmed that SO₄•⁻, HO• and O₂•⁻ were involved in GA/Fe(III)/PS system. However, quenching experiments further affirmed the impact of SO₄•⁻ and HO• towards IBP decomposition instead of O₂•⁻, with contribution ratio to IBP removal was 69.12% and 30.88%, respectively. SO₄•⁻ was the main radicals formed by directly activation of PS with Fe(II), while HO• was the transformation product of SO₄•⁻. Based on instrumental analysis (stopped-flow UV–vis spectrum and MS) and theoretical calculation, the potential reaction mechanism between GA and Fe(III) in the presence of PS was further proposed. GA complexed with Fe(III) firstly and the Fe(III)-GA complex was then converted into quinone substance, accompanied by the generation of Fe(II). Furthermore, the application of GA extended the optimal pH range to neutral as well, which made it a promising treatment in practical application.
显示更多 [+] 显示较少 [-]