细化搜索
结果 931-940 的 7,292
Metagenomics analysis of microbial community distribution in large-scale and step-by-step purification system of swine wastewater 全文
2022
Zheng, Mingmin | Shao, Shanshan | Chen, Yanzhen | Chen, Bilian | Wang, Mingzi
Biological treatment is one of the most widely used methods to treat swine wastewater in wastewater treatment plants. The microbial community plays an important role in the swine slurry treatment system. However, limited information is available regarding the correlation between pollutant concentration and dominant microbial community in swine wastewater. This work aimed to study the profiling of microbial communities and their abundance in the 40 M³/day large-scale and step-by-step treatment pools of swine wastewater. Metagenome sequencing was applied to study the changes of microbial community structure in biochemical reaction pools. The results showed that in the heavily polluted pools, it was mainly Proteobacteria, Cyanobacteria, Chlorella and other strains that could tolerate high concentration of ammonia nitrogen to remove nitrogen and absorb chemical oxygen demand (COD). In the moderately polluted pools, Nitrospirae, Actinobacteria and other strains further cooperated to purify swine wastewater. In the later stage, the emergence of Brachionus indicated the reduction of water pollution. The dominant microbes and their abundance changed with the purification of swine wastewater in different stages. Moreover, the dominant microflora of swine wastewater treatment pools at all levels reflected little difference in phylum classification level, while in genus classification level, the dominant microflora manifested great difference. Findings demonstrated that the microorganisms maintained ecological balance and absorbed the nutrients in the swine wastewater treatment pools, so as to play the role of purifying sewage. Therefore, the stepwise purification of swine wastewater can be realized by adding bacteria and microalgae of different genera.
显示更多 [+] 显示较少 [-]Low-temperature aerobic carbonization and activation of cellulosic materials for Pb2+ removal in water source 全文
2022
Ai, Shuo | Qin, Yue | Hong, Yuxiang | Liu, Linghui | Yu, Wanguo
Targeting the removal of Pb²⁺ in wastewater, cellulosic materials were carbonized in an aerobic environment and activated via ion exchange. The maximum adsorption capacity reached 243.5 mg/g on an MCC-derived adsorbent activated with sodium acetate. The modified porous properties improved the adsorption capacity. The capacity could be completely recovered five times through elution with EDTA. Because of the negative effects of Ni, Mg, and Ca elements, the adsorption capacities of activated carbonized natural materials were lower than that of pure cellulose. N₂ adsorption measurement showed that the adsorbent had a large specific surface area as well as abundant micropores and 4-nm-sized mesopores. FTIR and surface potential results proved that carboxyl group was generated in the aerobic carbonization, and was deprotonated during ion exchange. This adsorbent consisted of C–C bonds as the building blocks and hydrophilic groups on the surface. XPS results demonstrated that the Pb 4f binding energies were reduced by 0.7–0.8 eV due to the interaction between Pb²⁺ and the activated adsorbent, indicating that the carboxylate groups bonded with Pb²⁺ through coordination interactions. Pseudo-second-order and Elovich kinetic models were well fitted with the adsorption processes on the pristine and activated carbonized adsorbents, indicative of chemisorption on heterogeneous surfaces. The Freundlich expression agreed well with the data measured, and the pristine and activated adsorbents had weak and strong affinities for Pb²⁺, respectively. The Pb²⁺ adsorption process was exothermic and spontaneous, and heat release determined the spontaneity. The adsorption capacity is attributed to the carboxylate groups and pores generated in the aerobic oxidation and ion exchange procedures.
显示更多 [+] 显示较少 [-]Effects of soil protists on the antibiotic resistome under long term fertilization 全文
2022
Li, Hong-Zhe | Zhu, Dong | Sun, An-Qi | Qin, Yi-Fei | Lindhardt, Jonathan Hessner | Cui, Li
Soil protists are key in regulating soil microbial communities. However, our understanding on the role of soil protists in shaping antibiotic resistome is limited. Here, we considered the diversity and composition of bacteria, fungi and protists in arable soils collected from a long-term field experiment with multiple fertilization treatments. We explored the effects of soil protists on antibiotic resistome using high-throughput qPCR. Our results showed that long term fertilization had stronger effect on the composition of protists than those of bacteria and fungi. The detected number and relative abundance of antibiotic resistance genes (ARGs) were elevated in soils amended with organic fertilizer. Co-occurrence network analysis revealed that changes in protists may contribute to the changes in ARGs composition, and the application of different fertilizers altered the communities of protistan consumers, suggesting that effects of protistan communities on ARGs might be altered by the top-down impact on bacterial composition. This study demonstrates soil protists as promising agents in monitoring and regulating ecological risk of antibiotic resistome associated with organic fertilizers.
显示更多 [+] 显示较少 [-]Potential of nanocomposites of zero valent copper and magnetite with Eleocharis dulcis biochar for packed column and batch scale removal of Congo red dye 全文
2022
Imran, Muhammad | Andrews, Martina | Murtaza, Behzad | Ansar, Sabah | Shah, Noor Samad | Haq Khan, Zia Ul | Ali, Shahid | Boczkaj, Grzegorz | Hafeez, Farhan | Ali, Shafaqat | Rizwan, Muhammad
The current study is the first attempt to prepare nanocomposites of Eleocharis dulcis biochar (EDB) with nano zero-valent Copper (nZVCu/EDB) and magnetite nanoparticles (MNPs/EDB) for batch and column scale sequestration of Congo Red dye (CR) from synthetic and natural water. The adsorbents were characterized with advanced analytical techniques. The impact of EDB, MNPs/EDB and nZVCu/EDB dosage (1–4 g/L), pH (4–10), initial concentration of CR (20–500 mg/L), interaction time (180 min) and material type to remove CR from water was examined at ambient temperature. The CR removal followed sequence of nZVCu/EDB > MNPs/EDB > EDB (84.9–98% > 77–95% > 69.5–93%) at dosage 2 g/L when CR concentration was increased from 20 to 500 mg/L. The MNPs/EDB and nZVCu/EDB showed 10.9% and 20.1% higher CR removal than EDB. The adsorption capacity of nZVCu/EDB, MNPs/EDB and EDB was 212, 193 and 174 mg/g, respectively. Freundlich model proved more suitable for sorption experiments while pseudo 2nd order kinetic model well explained the adsorption kinetics. Fixed bed column scale results revealed excellent retention of CR (99%) even at 500 mg/L till 2 h when packed column was filled with 3.0 g nZVCu/EDB, MNPs/EDB and EDB. These results revealed that nanocomposites with biochar can be applied efficiently for the decontamination of CR contaminated water.
显示更多 [+] 显示较少 [-]Comparison of the emission factors of air pollutants from gasoline, CNG, LPG and diesel fueled vehicles at idle speed 全文
2022
Aosaf, Miahn Rasheeq | Wang, Yang | Du, Ke
The emission factor (EF) is a parameter used to assess vehicle emissions. Many studies have reported EFs for vehicles in driving conditions. However, the idling emissions should not be neglected in characterizing actual vehicle emissions in congested large cities, where idling is very common on the road. Whereas, EF data for idling vehicles have scarcely been reported in the literature, let alone comparison of different fuels. In this study, the EFs of passenger cars burning four types of fuels - gasoline, compressed natural gas (CNG), diesel, and liquefied petroleum gas (LPG) were measured and compared. The emissions data for CO, CO₂, unburned hydrocarbon (HC), and NO were recorded to calculate fuel-based EFs in units of g pollutants/kg fuel burned. EFs for CO, HC, and NO were compared for the four fuels. Diesel vehicles had the highest EF for CO, with an average value of 35.12 ± 21.37 g/kg fuel, due to low concentration of CO₂ in lean operation compared to CO emission. CNG vehicles had the highest EF for HC, with an average value of 28.15 ± 11.97 g/kg fuel, due to high concentration of unburned methane gas due to slow CNG flame speed whereas diesel vehicles again had the highest EF for NO due to high temperature and pressure and freezing of NO decomposition reaction, with an average value of 12.07 ± 5.37 g/kg fuel. Further comparison was conducted to analyze the effects of two additional variables on EF: engine displacement volume and model/brand year. Only the gasoline-fueled vehicles showed an increase in EFs (for CO, HC and NO) with the vehicle age according to the model year. However, no clear correlation was observed for CNG, LPG, and diesel-fueled vehicles. Finally, the EF results were compared with those reported in the literature, which have been measured in various countries under both idling and non-idling conditions. Because the idling EFs were not substantially smaller than those under moving conditions, and vehicles spend substantial time idling in large cities, idling emissions should not be ignored in the emission inventories for large cities.
显示更多 [+] 显示较少 [-]Midgut and fat body: Multisystemic action of pyriproxyfen on non-target organism Ceraeochrysa claveri (Neuroptera: Chrysopidae) 全文
2022
Scudeler, Elton Luiz | Carvalho, Shelly Favorito de | Garcia, Ana Silvia Gimenes | Santorum, Marilucia | Padovani, Carlos Roberto | Santos, Daniela Carvalho dos
Morphological tools can assist in the evaluation of effects of insecticides on non-target insects. Pyriproxyfen, a juvenile hormone analog, is known to interfere with growth and metamorphosis of insects. However, there are studies showing indirect effects on natural enemies, including green lacewings. Few prior studies describe morphological effects of pyriproxyfen on target insect organs, especially on natural enemies. Through morphological tools, this study aimed to characterize the midgut and fat body, both important organs of digestion and great metabolic activity respectively, of the predator Ceraeochrysa claveri after chronic exposure to pyriproxyfen. Larvae of C. claveri were fed Diatraea saccharalis egg clusters treated with pyriproxyfen in solution of 50 or 100 mg a.i. L⁻¹ throughout the larval stage. The biological data revealed significant increases in development time, especially in the third instar, and in cumulative mortality from the prepupal into the pupal stage. Morphological analysis of adult midgut (≤24 h old) showed damage including formation of epithelial folds, intercellular spaces, emission of cytoplasmic protrusions. Both fat body regions presented decrease of lipid droplets, vacuolization of trophocytes and mitochondrial injury featuring a multisystemic action. In both organs, pyriproxyfen exposure induced significant oxidative stress by mitochondrial superoxide production. Cytoprotective responses were induced in midgut and fat body cells by augmenting the number of cytoplasmic granules containing calcium and expression of HSP 90. Both organs proved to be efficient in presenting histopathological alterations, showing the sensitivity and applicability of this morphological tool for evaluating other insecticides in non-target organisms.
显示更多 [+] 显示较少 [-]Toxicological effects of atenolol and venlafaxine on zebrafish tissues: Bioaccumulation, DNA hypomethylation, and molecular mechanism 全文
2022
Lin, Wenting | Huang, Zhishan | Ping, Senwen | Zhang, Shuan | Wen, Xiufang | He, Yuhe | Ren, Yuan
The beta-blocker atenolol (ATE), and the selective serotonin and norepinephrine reuptake inhibitor, venlafaxine (VEN) are frequently detected in municipal wastewater effluents, but little is known about their ecotoxicological effect on aquatic animals. Herein, ATE and VEN were selected to explore their accumulation and global DNA methylation (GDM) in zebrafish tissues after a 30-day exposure. Molecular dynamics (MD) stimulation was used to investigate the toxic mechanism of ATE and VEN exposure. The results demonstrated that ATE and VEN could reduce the condition factor of zebrafish. The bioaccumulation capacity for ATE and VEN was in the order of liver > gut > gill > brain and liver > gut > brain > gill, respectively. After a 30-day recovery, ATE and VEN could still be detected in zebrafish tissues when exposure concentrations were ≥10 μg/L. Moreover, ATE and VEN induced global DNA hypomethylation in different tissues with a dose-dependent manner and their main target tissues were liver and brain. When the exposure concentrations of ATE and VEN were increased to 100 μg/L, the global DNA hypomethylation of liver and brain were reduced to 27% and 18%, respectively. In the same tissue exposed to the same concentration, DNA hypomethylation induced by VEN was more serious than that of ATE. After a 30-day recovery, the global DNA hypomethylations caused by the two drugs were still persistent, and the recovery of VEN was slower than that of ATE. The MD simulation results showed that both ATE and VEN could reduce the catalytic activity of DNA Methyltransferase 1 (DNMT1), while the effect of VEN on the 3D conformational changes of the DNMT1 domain was more significant, resulting in a lower DNA methylation rate. The current study shed new light on the toxic mechanism and potential adverse impacts of ATE and VEN on zebrafish, providing essential information to the further ecotoxicological risk assessment of these drugs in the aquatic environment.
显示更多 [+] 显示较少 [-]Current status of microbes involved in the degradation of pharmaceutical and personal care products (PPCPs) pollutants in the aquatic ecosystem 全文
2022
Narayanan, Mathiyazhagan | El-Sheekh, Mostafa | Ma, Ying | Pugazhendhi, Arivalagan | Natarajan, Devarajan | Kandasamy, Gajendiran | Raja, Rathinam | Saravana Kumar, R.M. | Kumarasamy, Suresh | Sathiyan, Govindasamy | Geetha, R. | Paulraj, Balaji | Liu, Guanglong | Kandasamy, Sabariswaran
Contamination of aquatic systems with pharmaceuticals, personal care products, steroid hormones, and agrochemicals has been an immense problem for the earth's ecosystem and health impacts. The environmental issues of well-known persistence pollutants, their metabolites, and other micro-pollutants in diverse aquatic systems around the world were collated and exposed in this review assessment. Waste Water Treatment Plant (WWTP) influents and effluents, as well as industrial, hospital, and residential effluents, include detectable concentrations of known and undiscovered persistence pollutants and metabolites. These components have been found in surface water, groundwater, drinking water, and natural water reservoirs receiving treated and untreated effluents. Several studies have found that these persistence pollutants, and also similar recalcitrant pollutants, are hazardous to a variety of non-targeted creatures in the environment. In human and animals, they can also have severe and persistent harmful consequences. Because these pollutants are harmful to aquatic organisms, microbial degradation of these persistence pollutants had the least efficiency. Fortunately, only a few wild and Genetically Modified (GMOs) microbial species have the ability to degrade these PPCPs contaminants. Hence, researchers have been studying the degradation competence of microbial communities in persistence pollutants of Pharmaceutical and Personal Care Products (PPCPs) and respective metabolites for decades, as well as possible degradation processes in various aquatic systems. As a result, this review provides comprehensive information about environmental issues and the degradation of PPCPs and their metabolites, as well as other micro-pollutants, in aquatic systems.
显示更多 [+] 显示较少 [-]Nano-enabled agrochemicals/materials: Potential human health impact, risk assessment, management strategies and future prospects 全文
2022
Okeke, Emmanuel Sunday | Ezeorba, Timothy Prince Chidike | Mao, Guanghua | Chen, Yao | Feng, Weiwei | Wu, Xiangyang
Nanotechnology is a rapidly developing technology that will have a significant impact on product development in the next few years. The technology is already being employed in cutting-edge cosmetic and healthcare products. Nanotechnology and nanoparticles have a strong potential for product and process innovation in the food industrial sector. This is already being demonstrated by food product availability made using nanotechnology. Nanotechnologies will have an impact on food security, packaging materials, delivery systems, bioavailability, and new disease detection materials in the food production chain, contributing to the UN Millennium Development Goals targets. Food products using nanoparticles are already gaining traction into the market, with an emphasis on online sales. This means that pre- and post-marketing regulatory frameworks and risk assessments must meet certain standards. There are potential advantages of nanotechnologies for agriculture, consumers and the food industry at large as they are with other new and growing technologies. However, little is understood about the safety implications of applying nanotechnologies to agriculture and incorporating nanoparticles into food. As a result, policymakers and scientists must move quickly, as regulatory systems appear to require change, and scientists should contribute to these adaptations. Their combined efforts should make it easier to reduce health and environmental impacts while also promoting the economic growth of nanotechnologies in the food supply chain. This review highlighted the benefits of a number of nano enabled agrochemicals/materials, the potential health impacts as well as the risk assessment and risk management for nanoparticles in the agriculture and food production chain.
显示更多 [+] 显示较少 [-]Facile synthesis of electrocatalytically active bismuth oxide nanosheets for detection of palladium traces in pharmaceutical wastewater 全文
2022
Zhao, Ke | Ge, Liya | Lisak, Grzegorz
Current synthesis routes of bismuth oxide nanosheets (BiONS) are relatively complicated, requiring the use of halogens or metalloids. Herein, a facile method to synthesize BiONS without the addition of halogens or other metalloids was developed. The synthesized BiONS were identified to have flake-shaped structures (300–1000 nm in width) with the thickness of 6–10 nm, which were predominantly made of β-Bi₂O₃. Such BiONS were applied to modify the surface of screen-printed carbon electrodes (BiONS-SPCEs) for the development of a robust palladium (Pd²⁺) sensor. After optimizing the electrochemical parameters of the sensor, it was found that the linear sensor response range and limit of detection for Pd²⁺ were 40–400 and 1.4 ppb, respectively. The electrocatalytic activity of the Pd²⁺-sensor was validated in the competing environment of other metal and metalloid ions. Real samples collected during a Pd recovery process from pharmaceutical wastewater were used to verify the application of BiONS-SPCEs in control of palladium recovery process. The quantitative results of post recovery palladium concentrations obtained using BiONS-SPCEs in treated pharmaceutical wastewater samples were in good agreement with those obtained by inductively coupled plasma-optical emission spectrometry (ICP-OES). Thus, such Pd²⁺-sensor provided the possibility of on-site process control of complex industrial samples for obtaining near-instant information that would lead to better management of resources used in the process, and same time assure environmental standards for both recovered products and processed discharge.
显示更多 [+] 显示较少 [-]