细化搜索
结果 931-940 的 7,240
Good field practice and hydrogeological knowledge are essential to determine reliable concentrations of microplastics in groundwater
2022
Lee, Jin-Yong | Jung, Jaehak | Raza, Maimoona
There are some weaknesses in the methodology of original paper “Informal landfill contributes to the pollution of microplastic in the surrounding environment” published in Environmental Pollution. We commented on the groundwater sampling procedure that affect the calculated concentrations of microplastics in groundwater. Important information related to the description of sampling wells, informal landfill, and the exact description of sample collection method are missing. In addition, significant data related to the groundwater like water level, flow direction, and velocity have been skipped, which are fundamental in groundwater related studies. There should be a clear diagram of landfill location and sampling wells in the landfill, for appropriate understanding of microplastics (MPs) pollution in surrounding environment of a landfill.
显示更多 [+] 显示较少 [-]Effect of landfill age on the physical and chemical characteristics of waste plastics/microplastics in a waste landfill sites
2022
The landfills store a lot of waste plastics, thus it has been confirmed a main source for the occurrence of plastics/microplastic. Although there are some reports that microplastics (MPs) can generate in leachate and refuse samples from the landfill, it exist many blanks for the evolution of physical and chemical characteristics of waste plastics and microplastics with different landfill age. To explore the process that large pieces of plastic are fractured into microplastics, the waste plastics with landfill age from 7 to 30 years are surveyed from a typical landfill in Shanghai. The results show that PE and PP are the most common types of landfilling plastics, and their chemical composition also have changed due to the creation of CO and –OH. Moreover, the crystallinity is affected by plastic type and landfill age. The crystallinity of PP increased from 24.9% to 56.8%, but for PE, the crystallinity decreased from 55.6% to 20.8%. The mechanical properties of waste plastics were reduced significantly, which may be caused by changes in carbon-chain molecules. Al, Ti, Co, and other metal elements were detected on the plastic surface. The hydrophobic behavior of waste plastic is constantly decreasing (102.2°–80.1°) under long-term landfilling. By investigating the changes in the physical and chemical characteristics of waste plastics with different landfill age can shed light upon the process of environmental weathering of waste plastics. This provide theoretical guidance for reducing the transport of microplastics to the environment.
显示更多 [+] 显示较少 [-]Bio-uptake, tissue distribution and metabolism of a neonicotinoid insecticide clothianidin in zebrafish
2022
Yang, Yi | Su, Limin | Huang, Ying | Zhang, Xiao | Li, Chao | Wang, Jia | Fan, Lingyun | Wang, Shuo | Zhao, Yuan H.
Neonicotinoids have been often detected in aquatic environment with high concentrations; however, little is known about their risk and fate to/in fish. This study systematically investigated the bio-uptake, tissue distribution and metabolism of neonicotinoids in zebrafish, taking clothianidin (CLO) as an example. The results revealed the uptake and elimination kinetics of CLO in whole fish and different tissues was very similar, and its bioconcentration factor (<1) indicates the low bioaccumulation potential in zebrafish. The highest accumulative tissues for CLO were found to be intestine and liver. Eight biotransformation products were identified in intestine and liver, and the metabolic pathways were found to be N-demethylation and nitro-reduction. The metabolic kinetics of two products (desmethyl clothianidin and clothianidin urea) revealed the metabolism of CLO mainly occurred in liver and intestine. This suggested that the hepatobiliary system played an important role in the metabolism and elimination of CLO. This study provides a comprehensive evaluation of the toxicokinetics of CLO in zebrafish, and these results can contribute to its ecological risk assessment.
显示更多 [+] 显示较少 [-]Occurrence and translocation of ustiloxins in rice false smut-occurred paddy fields, Hubei, China
2022
Sun, Qian | Qian, Zhisong | Liu, Hao | Zhang, Yongkang | Yi, Xun'e | Kong, Ren | Cheng, Shiyang | Man, Jianguo | Zheng, Lu | Huang, Junbin | Su, Guanyong | Letcher, Robert J. | Giesy, John P. | Liu, Chunsheng
Ustiloxin A (UA) and ustiloxin B (UB), two major mycotoxins produced by the pathogen of rice false smut (RFS) during rice cultivation, have attracted increasing attentions due to their potential health risks. However, limited data are available about their occurrence and fate in paddy fields and contamination profiles in rice. In this study, a field study was performed to investigate the occurrence and translocation of UA and UB in RFS-occurred paddies. For the first time to our knowledge, we reported a ubiquitous occurrence of the two ustiloxins in the paddy water (range: 0.01–3.46 μg/L for UA and <0.02–1.15 μg/L for UB) and brown rice (range: 0.09–154.08 μg/kg for UA and <0.09–23.57 μg/kg for UB). A significant positive correlation was observed between ustiloxin levels in paddy water and brown rice (rₛ = 0.48–0.79, p < 0.01). The occurrence of ustiloxin uptake in water-rice system was also evidenced by the rice exposure experiment, suggesting paddy water might be an important source for ustiloxin accumulation in rice. These results suggested that the contamination of ustiloxins in rice might occur widely, which was supported by the significantly high detection frequencies of UA (96.6%) and UB (62.4%) in polished rice (149 samples) from Hubei Province, China. The total concentrations of ustiloxins in the polished rice samples collected from Hubei Province ranged from <20.7 ng/kg (LOD) to 55.1 μg/kg (dry weight). Further studies are needed to evaluate the potential risks of ustiloxin exposure in the environment and humans.
显示更多 [+] 显示较少 [-]Wind farm noise shifts vocalizations of a threatened shrub-steppe passerine
2022
Gómez-Catasús, Julia | Barrero, Adrián | Llusia, Diego | Iglesias-Merchan, Carlos | Traba, Juan
Wind energy has experienced a notable development during the last decades, driving new challenges for animal communities. Although bird collisions with wind turbines and spatial displacement due to disturbance have been widely described in the literature, other potential impacts remain unclear. In this study, we addressed the effect of turbine noise on the vocal behaviour of a threatened shrub-steppe passerine highly dependent on acoustic communication, the Dupont's lark Chersophilus duponti. Based on directional recordings of 49 calling and singing males exposed to a gradient of turbine noise level (from 15 up to 51 dBA), we tested for differences in signal diversity, redundancy, and complexity, as well as temporal and spectral characteristics of their vocalizations (particularly the characteristic whistle). Our results unveiled that Dupont's lark males varied the vocal structure when subject to turbine noise, by increasing the probability of emitting more complex whistles (with increased number of notes) and shifting the dominant note (emphasizing the longest and higher-pitched note). In addition, males increased duration and minimum frequency of specific notes of the whistle, while repertoire size and signal redundancy remain constant. To our knowledge, this is the first study reporting multiple and complex responses on the vocal repertoire of animals exposed to turbine noise and unveiling a shift of the dominant note in response to anthropogenic noise in general. These findings suggest that the Dupont's lark exhibits some level of phenotypic plasticity, which might enable the species to cope with noisy environments, although the vocal adjustments observed might have associated costs or alter the functionality of the signal. Future wind energy projects must include fine-scale noise assessments to quantify the consequences of chronic noise exposure.
显示更多 [+] 显示较少 [-]Nickel bioaccessibility in soils with high geochemical background and anthropogenic contamination
2022
Ding, Song | Guan, Dong-Xing | Dai, Zhi-Hua | Su, Jing | Teng, H Henry | Ji, Junfeng | Liu, Yizhang | Yang, Zhongfang | Ma, Lena Q.
Abnormally high concentrations of metals including nickel (Ni) in soils result from high geochemical background (HB) or anthropogenic contamination (AC). Metal bioaccessibility in AC-soils has been extensively explored, but studies in HB-soils are limited. This study examined the Ni bioaccessibility in basalt and black shale derived HB-soils, with AC-soils and soils without contamination (CT) being used for comparison. Although HB- and AC-soils had similar Ni levels (123 ± 43.0 vs 155 ± 84.7 mg kg⁻¹), their Ni bioaccessibility based on the gastric phase of the Solubility Bioaccessibility Research Consortium (SBRC) in vitro assay was different. Nickel bioaccessibility in HB-soils was 6.42 ± 3.78%, 2-times lower than the CT-soils (12.0 ± 9.71%) and 6-times lower than that in AC-soils (42.6 ± 16.3%). Based on the sequential extraction, a much higher residual Ni fractionation in HB-soils than that in CT- and AC-soils was observed (81.9 ± 9.52% vs 68.6 ± 9.46% and 38.7 ± 16.0%). Further, correlation analysis indicate that the available Ni (exchangeable + carbonate-bound + Fe/Mn hydroxide-bound) was highly correlated with Ni bioaccessibility, which was also related to the organic carbon content in soils. The difference in co-localization between Ni and other elements (Fe, Mn and Ca) from high-resolution NanoSIMS analysis provided additional explanation for Ni bioaccessibility. In short, based on the large difference in Ni bioaccessibility in geochemical background and anthropogenic contaminated soils, it is important to base contamination sources for proper risk assessment of Ni-contaminated soils.
显示更多 [+] 显示较少 [-]Interaction and spatio-taxonomic patterns of the soil microbiome around oil production wells impacted by petroleum hydrocarbons
2022
Geng, Pengxue | Ma, Anzhou | Wei, Xiaoxia | Chen, Xianke | Yin, Jun | Hu, Futang | Zhuang, Xuliang | Song, Maoyong | Zhuang, Guoqiang
Numerous onshore oil production wells currently exist, and the petroleum hydrocarbon contamination of the surrounding soil caused by oil production wells is not well understood. Moreover, the impact of the distribution of the total petroleum hydrocarbons (TPH) in the soil on the microbiota requires further investigation. Accordingly, in this study, the distribution of petroleum hydrocarbons in the soils around oil production wells was investigated, and their alteration of the microbiota was revealed. The results revealed that in the horizontal direction, the heavily TPH-contaminated soils were mainly distributed within a circle with a radius of 200 cm centered on the oil production well; and in the vertical direction, the heavily TPH-contaminated soils were distributed within the 0–50 cm soil layer. A significant positive correlation was found between the microbial abundance and the TPH concentration in the soil with relatively low total carbon contents. Heavy TPH contamination (TPH concentration of >3000 mg/kg) significantly reduced the microbial diversity and altered the microbiota compared with the light TPH contamination (TPH concentration of around 1000 mg/kg). In the heavily TPH-contaminated soils, the relative abundances of the Proteobacteria and Bacteroides increased significantly; the network complexity among the soil microorganisms decreased; and the co-occurrence patterns were altered. In summary, the results of this study have reference value in the remediation of soils around oil production wells and provide guidance for the construction of microbial remediation systems for petroleum contamination.
显示更多 [+] 显示较少 [-]Risk assessment of mercury through dietary exposure in China
2022
Qing, Ying | Li, Yongzhen | Yang, Jiaqi | Li, Shichun | Gu, Kaixin | Bao, Yunxia | Zhan, Yuhao | He, Kai | Wang, Xiaoying | Li, Yanfei
Mercury (Hg) is a widespread heavy metal causing various damages to health, while insufficient studies assessed its exposure risk across China. This study explored concentrations in food items and dietary exposure risks across China by comprehensively analyzing the researches on total Hg (THg) in eight food items and methylmercury (MeHg) in aquatic foods published between 1980 and 2021. According to the included 695 studies, the average THg concentration in all food items was 0.033 mg/kg (ranging from 0.004 to 0.185 mg/kg), with the highest concentration in edible fungi. The average daily dietary THg exposure from all foods was 12.9 μg/day. Plant-based foods accounted for 62.7% of the dietary THg exposure. Cereals and vegetables were the primary source of THg exposure. The MeHg concentration in aquatic foods was 0.08 mg/kg, and the average dietary exposure was 3.8 μg/day. Monte Carlo simulations of the dietary exposure risk assessment of THg and MeHg showed that approximately 6.4 and 7.0% of residents exceeded the health-based guidance value set by the European Food Safety Authority, with higher exposure risk in Southwest and South China. The nationwide target hazard quotient index of THg was greater than 1, suggesting that the non-carcinogenic risk of dietary exposure to THg needed further concern. In summary, this study has a comprehensive understanding of dietary Hg exposure risks across China, which provide a data basis for Hg exposure risk assessment and policy formulation.
显示更多 [+] 显示较少 [-]Validity of using ambient concentrations as surrogate exposures at the individual level for fine particle and black carbon: A systematic review and meta-analysis
2022
Chen, Jiayao | Jahn, Heiko J. | Sun, Haitong Zhe | Ning, Zhi | Lu, Weisheng | Ho, Kin Fai | Ward, Tony J.
Exposure measurement error is an important source of bias in epidemiological studies. We assessed the validity of employing ambient (outdoor) measurements as proxies of personal exposures at individual levels focusing on fine particles (PM₂.₅) and black carbon (BC)/elemental carbon (EC) on a global scale. We conducted a systematic review and meta-analysis and searched databases (ISI Web of Science, Scopus, PubMed, Ovid MEDLINE®, Ovid Embase, and Ovid BIOSIS) to retrieve observational studies in English language published from 1 January 2006 until 5 May 2021. Correlation coefficients (r) between paired ambient (outdoor) concentration and personal exposure for PM₂.₅ or BC/EC were standardized as effect size. We used random-effects meta-analyses to pool the correlation coefficients and investigated the causes of heterogeneity and publication bias. Furthermore, we employed subgroup and meta-regression analyses to evaluate the modification of pooled estimates by potential mediators. This systematic review identified thirty-two observational studies involving 1744 subjects from ten countries, with 28 studies for PM₂.₅ and 11 studies for BC/EC. Personal PM₂.₅ exposure is more strongly correlated with ambient (outdoor) concentrations (0.63, 95% confidence interval [CI]: 0.57–0.68) than personal BC/EC exposure (0.49, 95% CI: 0.38–0.59), with significant differences in ṝ (0.14, 95% CI: 0.03–0.25; p < 0.05). The results demonstrated that the health status of participants was a significant modifier of pooled correlations. In addition, the personal to ambient (P/A) ratio for PM₂.₅ and average ambient BC/EC levels were potential effect moderators of the pooled ṝ. The funnel plots and Egger's regression test indicated inevident publication bias. The pooled estimates were robust through sensitivity analyses. The results support the growing consensus that the validity coefficient of proxy measures should be addressed when interpreting results from epidemiological studies to better understand how strong health outcomes are affected by different levels of PM₂.₅ and their components.
显示更多 [+] 显示较少 [-]Iron-doped hydroxyapatite for the simultaneous remediation of lead-, cadmium- and arsenic-co-contaminated soil
2022
Yang, Zhihui | Gong, Hangyuan | He, Fangshu | Repo, Eveliina | Yang, Weichun | Liao, Qi | Zhao, Feiping
Since lead, cadmium and arsenic have completely opposite chemical behaviors, it is very difficult to stabilize all these three heavy metals simultaneously. Herein, a novel iron-doped hydroxyapatite composite (Fe-HAP) was developed via an ultrasonic-assisted microwave hydrothermal method for the simultaneous remediation of lead-, cadmium-, and arsenic-co-contaminated soil in Hunan Province, South China. Using DTPA/sodium bicarbonate extractant to extract bioavailable Pb, Cd and As in soil after Fe-HAP remediation for 60 days, the immobilization efficiencies were 79.77%, 51.3% and 37.5% for Pb, Cd and As, respectively. The soil extractable and exchangeable fractions of Pb, Cd and As decreased significantly. In batch experiments, the adsorption kinetics of Pb, Cd and As on Fe-HAP were well described by pseudo-second-order models, indicating that the adsorption is controlled by chemisorption. In the Langmuir adsorption isotherm, the maximum adsorption capacities of Cd²⁺ and As(V) were 476.2 mg g⁻¹ and 195.69 mg g⁻¹, respectively, while Pb²⁺ fit the Freundlich model better. The XRD, SEM and XPS analyses indicated that Fe-HAP formed stable minerals of Pb₅(PO₄)₃OH, Cd₃(PO₄)₂·4H₂O, Cd(OH)₂ and Fe₃(AsO₄)₂·6H₂O with Pb, Cd and As. Overall, its facile and efficient immobilization performance indicate that Fe-HAP has potential for practical applications in integrative remediation of Pb-, Cd-, and As- co-contaminated soil.
显示更多 [+] 显示较少 [-]