细化搜索
结果 941-950 的 7,214
Nonstereoselective behavior of novel chiral organophosphorus pesticide Dufulin in cherry radish by different absorption methods
2022
Zheng, Ruonan | Shao, Siyao | Zhang, Subin | Yu, Zhiyang | Zhang, Weiwei | Wu, Tao | Zhou, Xin | Ye, Qingfu
Dufulin is a biologically derived antiviral agent chemically synthesized by α-phosphoramidate in sheep and is effective against viral diseases in plants such as tobacco, rice, cucumber and tomato. However, the environmental behaviors and fate of Dufulin under different cultivation systems remain unknown. This study investigates the absorption, translocation and accumulation of ¹⁴C-Dufulin stereoisomers introduced by pesticide leaf daubing and by mixing the pesticide with soil in different tissues of cherry radish. We particularly focused on whether the behaviors of Dufulin enantiomers in plants were stereoselective. In the leaf uptake experiments, S-Dufulin and R-Dufulin were transported both up and down, while more than 93% of the pesticide remained in the labeled leaves. During the radicular absorption experiments, both enantiomers of Dufulin were taken up by radish roots and moved to the upper part of the plant, while less than 0.2% Dufulin was absorbed from the soil. Hence, it was easier for Dufulin to enter plants through the leaf surface than through the roots. However, we found in this trial that the stereoisomers of Dufulin underwent nonstereoselective absorption and translocation, which implies that rac-Dufulin and its metabolites should be a major research priority. Overall, our results provide a relatively accurate prediction of the risk assessment of Dufulin, which will help guide its rational use in the environment as well as ensure eco-environmental safety and human health.
显示更多 [+] 显示较少 [-]Hierarchically porous biochar templated by in situ formed ZnO for rapid Pb2+ and Cd2+ adsorption in wastewater: Experiment and molecular dynamics study
2022
Wu, Jiawen | Wang, Tao | Shi, Nan | Min, Fanfei | Pan, Wei-Ping
3D hierarchical porous biochar (HPBC) was synthesized by a thermally removable template without post-activation. Zn(NO₃)₂ decomposition produced gases and ZnO in situ to activate and expand the three-dimensional micro-and mesopores. Compared with pristine biochar (BC), the specific surface area and pore volume of HPBC were increased by 223 and 75 times, respectively. The abundant pore structure of HPBC significantly enhanced the diffusion rate of heavy metals. For example, compared to BC, the time required for HPBC to adsorb Pb²⁺ reach adsorption equilibrium was reduced by 87.5% (40 min vs 5min). Such an adsorption performance of HPBC was also insensitive to different background ions (K⁺, Na⁺, Ca²⁺, and Mg²⁺) with a much higher concentration than that of heavy metals. When applied to treat desulfurization wastewater from power plants, HPBC yielded 100% removal of Pb²⁺ and Cd²⁺, much higher than that by using commercial activated carbon (28%). Molecular dynamics simulation revealed different locations preferred by the adsorption of Pb²⁺ (micropores) and Cd²⁺ (mesopores) in the hierarchical pore structures. The adsorption of Pb²⁺ and Cd²⁺ on HPBC was mainly achieved by diffusion, oxygen functional group complexation, and precipitation. These results provided better knowledge to understand the microscopic adsorption mechanisms of heavy metals in hierarchical pores and a facile yet robust strategy to design such structures in biochar for efficient wastewater treatment.
显示更多 [+] 显示较少 [-]Biomass-related PM2.5 induces mitochondrial fragmentation and dysfunction in human airway epithelial cells
2022
Gao, Mi | Liang, Chunxiao | Hong, Wei | Yu, Xiaoyuan | Zhou, Yumin | Sun, Ruiting | Li, Haiqing | Huang, Haichao | Gan, Xuhong | Yuan, Ze | Zhang, Jiahuan | Chen, Juan | Mo, Qiudi | Wang, Luyao | Lin, Biting | Li, Bing | Ran, Pixin
The use of biomass for cooking and heating is considered an important factor associated with chronic obstructive pulmonary disease (COPD), but few studies have previously addressed its underlying mechanisms. Therefore, this research aimed to evaluate the effects of biomass-related PM₂.₅ (BRPM₂.₅) exposure on 16HBE human airway epithelial cells and in mice with regard to mitochondrial dysfunction. Our study indicated that BRPM₂.₅ exposure of 16HBE cells resulted in mitochondrial dysfunction, including decreased mitochondrial membrane potential, increased expression of fission proteins-phospho-DRP1, increased mitochondrial ROS (mtROS), and decreased levels of ATP. BRPM₂.₅ altered the mitochondrial metabolism of 16HBE cells by decreasing mitochondrial oxygen consumption and glycolysis. However, Mitochondria targeted peptide SS-31 eliminated mitochondrial ROS and alleviated the ATP deficiency and proinflammatory cytokines release. BRPM2.5 exposure resulted in abnormal mitochondrial morphological alterations both in 16HBE and in lung tissue. Taken together, these results suggest that BRPM₂.₅ has detrimental effects on human airway epithelial cells, leading to mitochondrial dysfunction, abnormal mitochondrial metabolism and altered mitochondrial dynamics. The present study provides the first evidence that disruption of mitochondrial structure and mitochondrial metabolism may be one of the mechanisms of BRPM₂.₅-induced respiratory dysfunction.
显示更多 [+] 显示较少 [-]Enrichment and removal of five brominated flame retardants in the presence of co-exposure in a soil-earthworm system
2022
Qiao, Zhihua | Lu, Cong | Han, Yanna | Luo, Kailun | Fu, Mengru | Zhou, Shanqi | Peng, Cheng | Zhang, Wei
Brominated flame retardants (BFRs) are widely used because of their excellent flame retardant performance and are frequently detected in the soil environment. Their adverse impacts on soil organisms cannot be ignored. The enrichment and removal dynamics of the five BFRs (pentabromotoluene (PBT), hexabromobenzene (HBB), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), decabromodiphenyl ethane (DBDPE), and decabromodiphenyl ether (BDE209)) in earthworms and different tissues (epidermis, intestinal tract, and cast) in the presence of co-exposure were explored for the first time. The results showed that the enrichment of the five BFRs in earthworms increased with increasing exposure concentration and time. The distribution of these chemicals in different tissues of earthworms was different. The contents of HBB and PBT in the intestine and epidermis were the highest and were more than 60% during most of the time. Additionally, the contents of BTBPE, BDE209, and DBDPE were significantly increased while the contents of HBB and PBT were significantly decreased in the cast. The correlation analysis indicated that HBB and PBT had a significant relationship in all the tissues, but BDE209 and DBDPE only had a relationship in the cast, which might be attributed to the structure of the pollutants. Additionally, the experiments illustrated that earthworms had strong removal for HBB and PBT, but were weak for DBDPE and BDE209.
显示更多 [+] 显示较少 [-]Hemocytes of bivalve mollusks as cellular models in toxicological studies of metals and metal-based nanomaterials
2022
Weng, Nanyan | Meng, Jie | Huo, Shouliang | Wu, Fengchang | Wang, Wen-Xiong
Understanding the impacts of environmental pollutants on immune systems is indispensable in ecological and health risk assessments due to the significance of normal immunological functions in all living organisms. Bivalves as sentinel organisms with vital ecological importance are widely distributed in aquatic environments and their innate immune systems are the sensitive targets of environmental pollutants. As the central component of innate immunity, bivalve hemocytes are endowed with specialized endolysosomal systems for particle internalization and metal detoxification. These intrinsic biological features make them a unique cellular model for metal- and nano-immunotoxicology research. In this review, we firstly provided a general overview of bivalve's innate immunity and the classification and immune functions of hemocytes. We then summarized the recent progress on the interactions of metals and nanoparticles with bivalve hemocytes, with emphasis on the involvement of hemocytes in metal regulation and detoxification, the interactions of hemocytes and nanoparticles at eco/bio-nano interface and hemocyte-mediated immune responses to the exposure of metals and nanoparticles. Finally, we proposed the key knowledge gaps and future research priorities in deciphering the fundamental biological processes of the interactions of environmental pollutants with the innate immune system of bivalves as well as in developing bivalve hemocytes into a promising cellular model for nano-immuno-safety assessment.
显示更多 [+] 显示较少 [-]Estimate of hydrochlorofluorocarbon emissions during 2011–2018 in the Yangtze River Delta, China
2022
Yu, Yan | Xu, Honghui | Yao, Bo | Pu, Jingjiao | Jiang, Yujun | Ma, Qianli | Fang, Xuekun | O'Doherty, Simon | Chen, Liqu | He, Jun
Hydrochlorofluorocarbons (HCFCs) are used as temporary substitutes for chlorofluorocarbons and other ozone-depleting substances because they have reduced ozone depletion and global warming potentials. The consumption and production of HCFCs are regulated via the Montreal Protocol and its amendments till 2013, with a complete phase-out being scheduled by 2030 for Article 5 parties (developing countries). To better understand the characteristics and emissions of HCFCs in the Yangtze River Delta (YRD), which is the largest metropolitan area in China, weekly flask samples were collected at the Lin'an regional background station located in the YRD from 2011 to 2018 and measured for four HCFCs (HCFC-22, HCFC-141b, HCFC-142b, and HCFC-124). The HCFC-132b and HCFC-133a measurements began in 2018. The ambient mixing ratios of the HCFCs exhibited higher concentrations and larger variabilities than those at the Shangri-la regional background station at similar latitudes in southwest China. The HCFC emissions in the YRD were estimated based on the tracer ratio method using CO and HFC-134a as tracers, and were comparable within the uncertainties. Our results are generally consistent with previous estimates obtained using top-down approaches. HCFC-22 and HCFC-141b contributed 52% ± 23% and 41% ± 24% of the total ODP-weighted (CFC-11-equivalent) HCFC emissions from the YRD, respectively, whereas HCFC-22 contributed the most (83% ± 36%) to the total CO₂-equivalent HCFC emissions from the YRD. The cumulative ODP-weighted and CO₂-equivalent emissions of HCFCs from the YRD accounted for 25% ± 15% and 20% ± 11% of the national corresponding totals, respectively, for 2011–2017. The HCFC-141b emissions from the YRD contributed approximately half of the total Chinese emissions. HCFC-133a emissions in the YRD accounted for approximately one-fifth of the global total in 2018. Thus, the YRD is an important contributor of HCFC emissions on national and global scales.
显示更多 [+] 显示较少 [-]Enhanced removal of sulfur-containing organic pollutants from actual wastewater by biofilm reactor: Insights of sulfur transformation and bacterial metabolic traits
2022
Zhang, Wei | Wu, Yang | Wu, Jing | Zheng, Xiong | Chen, Yinguang
Sulfur-containing organic pollutants in wastewater could threaten human health due to their high malodor and toxicity, and their conversion processes are more complex than inorganic sulfur compounds. Membrane aerated biofilm reactor (MABR), as a novel and environmentally-friendly biofilm-based technology, is able to remove inorganic sulfur in synthetic wastewater. However, it is unknown how sulfur-containing organic pollutants in actual wastewater are transformed in MABR system. This work demonstrated the feasibility of MABR to eliminate sulfur-containing organic pollutants in actual wastewater, and the removal efficiency could be reached at approximately 100%. Meanwhile, over 70% of sulfur-containing organic contaminants were transformed to SO₄²⁻ during the long-term operation. Further analysis indicated that the functional bacteria that participated in sulfur transformation and carbohydrates degradation (e.g., Chujaibacter, Microscillaceaesp., and Thiobacillus) were evidently enriched when treating actual wastewater. Moreover, the critical metabolic pathways (e.g., sulfur metabolism, glycolysis metabolism, and pyruvate metabolism), and the corresponding genetic expressions (e.g., nrrA, tauA, tauC, sorA, and SUOX) were evidently up-regulated during long-term operation, which was beneficial for the transformation of sulfur-containing organic pollutants in actual wastewater by MABR. This work would expand the application of MABR for treating the actual sulfur-containing organic wastewater and provide an in-depth understanding of the organic sulfur transformation in MABR.
显示更多 [+] 显示较少 [-]Altered active pyrene degraders in biosurfactant-assisted bioaugmentation as revealed by RNA stable isotope probing
2022
Teng, Tingting | Liang, Jidong | Zhu, Jinwei | Jin, Pengkang | Zhang, Dayi
Bioaugmentation is an effective approach for removing pyrene from contaminated sites, and its performance is enhanced by a biosurfactant. To reveal the mechanisms of biosurfactant-assisted bioaugmentation, we introduced RNA stable isotope probing (RNA-SIP) in the pyrene-contaminated soils and explored the impacts of rhamnolipid on the pyrene degradation process. After 12-day degradation, residual pyrene was the lowest in the bioaugmentation treatment (7.76 ± 1.57%), followed by biosurfactant-assisted bioaugmentation (9.86 ± 2.58%) and enhanced natural attenuation (23.97 ± 1.05%). Thirteen well-known and two novel pyrene-degrading bacteria were confirmed to participate in the pyrene degradation. Pyrene degradation was accelerated in the biosurfactant-assisted bioaugmentation, manifested by the high diversity of active pyrene degraders. Our findings expand the knowledge on pyrene degrading bacteria and the mechanisms of pyrene degradation in a bioaugmentation process.
显示更多 [+] 显示较少 [-]Oxidation of sulfamethazine by peracetic acid activated with biochar: Reactive oxygen species contribution and toxicity change
2022
Zhang, Zhibo | Duan, Yanping | Dai, Chaomeng | Li, Si | Chen, Yuru | Tu, Yaojen | Leong, Kah Hon | Zhou, Lang
Peracetic acid (PAA) as an emerging oxidative has been concerned increasingly due to its high oxidation capacity and low byproducts formation potential. This study was to investigate the oxidation of sulfamethazine (SMZ) by PAA activated with activated biochar (ABC) after thermal modification. The results demonstrated that PAA could be effectively activated by ABC to degrade SMZ in a wide pH range (3–9), which followed the pseudo-second-order kinetics (R² > 0.99). Both non-radicals (singlet oxygen) and free radicals (alkoxy radicals, hydroxyl radicals) existed in the ABC/PAA system, and the degradation of SMZ was dominated by singlet oxygen. Humic acid (HA), SO₄²⁻ and HCO₃⁻ slightly inhibited the degradation of SMZ in the ABC/PAA process, while Cl⁻ and Br⁻ promoted the degradation of SMZ. The cleavage of S–N, S–C bond, and SO₂ extraction reaction rearrangement was the main oxidation process of SMZ. Meanwhile, the results of the ECOSAR program showed that the acute toxicity of most by-products was significantly reduced compared to SMZ, which revealed the potential applicability of the ABC/PAA process in the treatment of antibiotics pollution and their detoxification.
显示更多 [+] 显示较少 [-]Suspect and non-targeted screening-based human biomonitoring identified 74 biomarkers of exposure in urine of Slovenian children
2022
Tkalec, Žiga | Codling, Garry | Tratnik, Janja Snoj | Mazej, Darja | Klánová, Jana | Horvat, Milena | Kosjek, Tina
Human exposure to organic contaminants is widespread. Many of these contaminants show adverse health effects on human population. Human biomonitoring (HBM) follows the levels and the distribution of biomarkers of exposure (BoE), but it is usually done in a targeted manner. Suspect and non-targeted screening (SS/NTS) tend to find BoE in an agnostic way, without preselection of compounds, and include finding evidence of exposure to predicted, unpredicted known and unknown chemicals. This study describes the application of high-resolution mass spectrometry (HRMS)-based SS/NTS workflow for revealing organic contaminants in urine of a cohort of 200 children from Slovenia, aged 6–9 years. The children originated from two regions, urban and rural, and the latter were sampled in two time periods, summer and winter. We tentatively identified 74 BoE at the confidence levels of 2 and 3. These BoE belong to several classes of pharmaceuticals, personal care products, plasticizers and plastic related products, volatile organic compounds, nicotine, caffeine and pesticides. The risk of three pesticides, atrazine, amitraz and diazinon is of particular concern since their use was limited in the EU. Among BoE we tentatively identified compounds that have not yet been monitored in HBM schemes and demonstrate limited exposure data, such as bisphenol G, polyethylene glycols and their ethers. Furthermore, 7 compounds with unknown use and sources of exposure were tentatively identified, either indicating the entry of new chemicals into the market, or their metabolites and transformation products. Interestingly, several BoE showed location and time dependency. Globally, this study presents high-throughput approach to SS/NTS for HBM. The results shed a light on the exposure of Slovenian children and raise questions on potential adverse health effects of such mixtures on this vulnerable population.
显示更多 [+] 显示较少 [-]