细化搜索
结果 951-960 的 1,539
Comparing the Tolerance Limits of Selected Bacterial and Protozoan Species to Vanadium in Wastewater Systems
2012
Kamika, Ilunga | Momba, M. N. B.
This study compared the tolerance limits of selected bacterial (Bacillus licheniformis, Brevibacillus lactosporus and Pseudomonas putida) and protozoan (Aspidisca, Trachelophyllum and Peranema) species to V5+ in wastewater systems. The isolates were exposed to various concentrations of V5+ (from 10 to 240 ppm), and their tolerance limits to this heavy metal were assessed at different temperatures (25, 30, 35 and 40°C) and pHs (4, 6, 7, 8 and 10) for 5 days. Chemical oxygen demand (COD), dissolved oxygen (DO) and die-off rate of the isolates were measured using standard methods. The results indicated that test isolates were tolerant to V5+, with a gradual decrease in their colony/cell counts when V5+ concentration gradually increased. Bacterial species were found to be more significantly tolerant (MIC: 110–230 ppm V5+) to V5+ than protozoan species which showed an earlier total inhibition/die-off rate (100%) at 60–100 ppm V5+ (MIC) (p < 0.001). P. putida was the most tolerant bacterial species (MIC: 230 ppm V5+) and Aspidisca sp. the most sensitive protozoan species (MIC: 60 ppm V5+). An increase in COD and DO removal was observed throughout the experimental period. The highest COD increase (up to 237.11%) and DO removal (almost 100%) were observed in mixed liquor inoculated with P. putida after exposure to 10 ppm V5+. Changes in pH and temperature affected the tolerance limits of all isolates. This study suggests the use of these tolerant bacterial and protozoan species in the bioremediation of V5+ from domestic and industrial wastewater under the control of pH and temperature.
显示更多 [+] 显示较少 [-]Sorption Behavior of Arsenate by Mg-Bearing Minerals at Hyperalkaline Condition: Implications for Oxyanions Sequestration During the Use and Disposal of Alkaline Wastes
2012
Opiso, Einstine | Asai, Atsushi | Sato, Tsutomu | Yoneda, Tetsuro | Liu, Xiaoji
The utilization and disposal of alkaline waste materials such as slag and coal fly ash as cement aggregates and raw materials in cement manufacturing can pose environmental and health hazards because these waste materials usually contain elevated concentration of toxic elements. This study examined the possibility of controlling the pore water chemistry of these waste materials in order to induce the secondary mineral formation of Mg-bearing minerals as major sorbing solids for oxyanions during the utilization and disposal of alkaline wastes. The formation of Mg-bearing minerals was examined at ambient temperature and alkaline pH conditions in the Mg–Si–Al system. The interaction of Mg-bearing minerals with oxyanions using arsenate as an analog was examined during and after mineral formation. The results revealed that the generated Mg-bearing mineral phases were smectite and brucite in Mg–Si system and hydrotalcite and serpentine in Mg–Si–Al system. Moreover, hydrotalcite, serpentine, brucite, and smectite phases formed under low Si ratio showed high sorption capacity for arsenate, but only high Al content hydrotalcite and serpentine showed substantial irreversible fraction of sorbed arsenate. Hence, the generation of these kinds of hydrotalcite and serpentine phases as scavengers for oxyanions must be considered during the utilization and disposal of alkaline wastes.
显示更多 [+] 显示较少 [-]Impact of Emission Reductions between 1980 and 2020 on Atmospheric Benzo[a]pyrene Concentrations over Europe
2012
Bieser, Johannes | Aulinger, Armin | Matthias, Volker | Quante, Markus
Benzo[a]pyrene (BaP) has been proven to be toxic and carcinogenic. Since 2010, the European Union officially established target values for BaP concentrations in ambient air. In this study BaP concentrations over Europe have been modelled using a modified version of the chemistry transport model Community Multiscale Air Quality (CMAQ) which includes the relevant reactions of BaP. CMAQ has been run using different emission datasets for the years 1980, 2000, and 2020 as input data. In this study, the changes in BaP concentrations between 1980 and 2020 are evaluated and regions which exceed the European annual target value of 1 ng/m3 are identified, i.e. the Po Valley, the Paris metropolitan area, the Rhine-Ruhr area, Vienna, Madrid, and Moscow. Additionally, the impact of emission reductions on atmospheric concentrations of BaP is investigated. Between 1980 and 2000, half of the BaP emission reductions are due to lower emissions from industrial sources. These emission reductions, however, only contribute to one third of the total ground-level BaP concentration reduction. Further findings are that between 2000 and 2020, a large part (40%) of the BaP concentration reduction is not due to changes in BaP emissions but caused by changes in emissions of criteria pollutants which have an impact on the formation of ozone.
显示更多 [+] 显示较少 [-]Insights into Human Impacts on Streams from Tolerance Profiles of Macroinvertebrate Assemblages
2012
Chessman, Bruce C. | McEvoy, Paul K.
We present the concept of assemblage tolerance profiles (ATPs) as an aid to freshwater bioassessment, and illustrate it with a practical example. An ATP describes the proportion of taxa in an observed assemblage that is estimated to tolerate each level of a specific stressor within a defined range. We used an extensive compilation of biomonitoring field data to estimate the lower tolerances for pH and dissolved oxygen (DO) of common families of macroinvertebrates in rivers of south-eastern Australia. These limits were then used to establish ATPs for macroinvertebrate assemblages at 30 sites across six river systems with varying levels of exposure to drainage from disused mines and discharges from sewage treatment plants. We hypothesised that sites with more exposure to mine drainage would have ATPs indicating greater tolerance of low pH, whereas sites with more exposure to sewage discharges would have ATPs indicating greater tolerance of low DO, and found that these hypotheses were confirmed for five of the six river systems. We suggest that stressor-specific ATPs, based on tolerances derived from either field distributions or laboratory tests, can help to verify or eliminate candidate causes of inferred human impacts on aquatic ecosystems.
显示更多 [+] 显示较少 [-]Feasibility of Different Bioremediation Strategies for Treatment of Clayey and Silty Soils Recently Polluted with Diesel Hydrocarbons
2012
Moliterni, E. | Rodriguez, L. (Luis) | Fernández, F. J. | Villaseñor, J.
Bioremediation strategies, including biostimulation, exogenous bioaugmentation and autochthonous bioaugmentation, were evaluated to determine their ability to degrade petroleum hydrocarbons in two recently polluted agricultural soils, one with a clayey texture and a silty loam soil. It was hypothesized in this work that the bioavailability of the pollutant may depend on the soil type, which would determine the biodegradation rate and the correct methodology to be used. The soils were artificially contaminated with diesel fuel, and several soil–water suspension batch microcosm experiments were conducted to observe the bioremediation process. The inocula used in the experiments included an autochthonous soil consortium and an exogenous consortium that had been acclimated to diesel consumption. The clayey soil desorbed diesel quickly, while the silty soil, with a higher organic content, did not. Hydrocarbon availability was limited in the latter case. After 48 h of treatment, the diesel removal efficiency in the clayey soil was clearly higher than that in the silty soil. However, after 11 days, the efficiencies were similar, and more than 95% of the diesel was biodegraded in most experiments. According to the efficiency and bioavailability analyses, the best methodology to bioremediate the silty soil was biostimulation with the native consortium. In contrast, bioaugmentation with a combination of native and exogenous consortia was chosen to treat the clayey soil. The results of this study suggest that when pollutants are easily available, bioaugmentation can successfully remediate the pollution. However, when availability is limited, biostimulation can be more efficient.
显示更多 [+] 显示较少 [-]Polycyclic Aromatic Hydrocarbons, Polychlorinated Biphenyls and Trace Metals in Sediments from a Coastal Lagoon (Northern Adriatic, Italy)
2012
Guerra, Roberta
Surface sediments (0–5 cm) were analysed to provide information on levels, spatial trends and sources of the 16 USEPA polycyclic aromatic hydrocarbons (PAH), 15 polychlorinated biphenyls (PCBs) and trace metals (copper, chromium, mercury, nickel and zinc) in channel and wetland habitats of Pialassa Baiona lagoon (Italy). The highest levels of PAHs, PCBs and Hg (3,032–87,150, n.d.–3,908 and 1.3–191 mg kg−1) were mainly found at channel habitats close to industrial sources. Pyrogenic PAH inputs were significant, with a predominance of four-ring PAHs and combustion-related PAHs in both channel and wetland habitats. Among PCB congeners, chlorination class profiles show that penta- and hexachlorinated PCBs are the most prevalent homologues accounting for approximately 33% and 47% of the total PCB concentrations in channel sediments. Total toxicity equivalent factors (TEQs) of potentially carcinogenic PAHs varied from 348 to 7,879 μg kg−1 and from 4.3 to 235 μg kg−1 in channel and wetland sediments; calculated TEQs for dioxin-like PCB congeners at channel habitats ranged from n.d. to 86.7 μg kg−1. Comparison of PAHs, PCBs and metal levels with Sediment Quality Guidelines suggests that more concern should be given to the southern area of the lagoon for potential risks of carcinogenic PAHs, dioxin-like PCBs and mercury.
显示更多 [+] 显示较少 [-]Vadose Zone Microbial Transport Below At-Grade Distribution of Wastewater Effluent
2012
Motz, Erin C. | Cey, Edwin | Ryan, M Cathy | Chu, Angus
The attenuation of Escherichia coli and total coliform from secondary treated wastewater effluent under two “at-grade” effluent distribution systems was evaluated in a sandy silt vadose zone in a cold climate. The two at-grade distribution lines had different designs and hydraulic loading rates. Effluent transport was examined using chloride as a tracer. Coliform fate was evaluated relative to the chloride using a combination of in situ pore water sampling and destructive soil sampling, combined with the observation of a dye tracer along excavation sidewalls. Although bacteria attenuation in the subsoil appeared to decrease during colder, winter temperatures (likely due to decreased viability and decreased predation), the subsoil provided about a four log reduction in E. coli over 90Â cm of vertical transport. Horizontal transport of bacteria (up to 1.5Â m from the line) was likely aided by flow on top of a microbial biomat observed at the soil surface. Both the subsurface dye patterns and the E. coli sampling suggested less preferential flow occurred below the lower loading rate design. At-grade distribution of secondary treated wastewater appears to be a viable alternative to conventional distribution fields at sites with similar climate and soils.
显示更多 [+] 显示较少 [-]Prediction of Vertical DNAPL Vapour Fluxes in Soils Using Quasi-Analytical Approaches: Bias Related to Density-Driven and Pressure-Gradient-Induced Advection
2012
Marzougui, Salsabil | Schäfer, Gerhard | Dridi, Lotfi
This study focuses on a detailed analysis of the errors introduced by two quasi-analytical approaches based on either Fick’s first law or a combination of Fick’s and Darcy’s laws to evaluate the vapour flux of chlorinated solvents from a source zone located in the unsaturated zone towards the atmosphere. A coupled one-dimensional numerical flow and transport model was developed and applied to three case studies characterised by different water content profiles in the vadose zone and under different levels of maximum dense nonaqueous-phase liquid vapour concentrations and vapour pressure conditions of the source zone. The steady-state concentration and pressure profiles obtained were then used in the two quasi-analytical approaches to estimate the flux towards the atmosphere. When mass fluxes due to density-driven advection become dominant and the vertical advective mass fluxes are increased due to strong pressure gradients in the soil air, the error was observed to increase when using the pure diffusion approach in the quantification of the surface flux calculated by the numerical model with increasing dimensionless Rayleigh numbers. Without taking into account the advective transport in the approach, the relative error calculated with only Fick’s law overestimates the real vapour flux when density-driven advection is dominant and underestimates it when pressure-gradient-driven advection dominates. The more advanced advective–diffusive quasi-analytical approach fits reasonably well with the numerically obtained mass fluxes except near soil layer discontinuities, where the evaluation of both the concentration gradient and pressure gradient in the porous media as well as the determination of the average effective diffusion coefficients are rendered more difficult.
显示更多 [+] 显示较少 [-]The Determination of Ozone in Ambient Air with Free Hanging Filters as Passive Samplers
2012
Adema, E. H. | Heeres, P. | Rahayuningsih, H Aprita | Rineksa, S.
This paper describes the use of dry free hanging filters, as passive samplers to determine ozone in the ambient air. The filters, with a diameter of 25 mm, were impregnated with 5,5′-disodium indigo disulphonate (IDS), a reagent for ozone. From the amount of reacted indigo compound, found on the filter, and the ozone concentration in the ambient air, a pseudo rate constant k ₁, of the reaction between ozone (O₃) and IDS on the filter, is calculated. The range of measurement is between 9 and 205 μg/m³ ambient ozone. The dry filter method is specific for ozone, while the Dutch standard method NEN2789, based on an aqueous solution of IDS, has to be corrected for the presence of NO ₓ . From wind tunnel and field experiments, k ₁ proved to vary between 0.7 and 1.5 × 10⁻⁶ m³ s⁻¹ (μg O₃)⁻¹ at wind velocities between 1 and 3 m/s and at an exposure time of 60 min. Within these conditions, ozone concentrations have been determined with free hanging filters in four busy streets in Yogyakarta, Indonesia and at two background sites using an average value of k ₁ of 1.2 × 10⁻⁶. Subsequently, the traffic NO emission was estimated from the difference of the O₃ concentrations at both sides of a road. For an arbitrary situation, an NO emission of 255 μg/s per metre road length was calculated. The filter method is inexpensive and practical, needs no electricity, is easily assembled and can be used to perform measurements in remote areas. It is shown here that this simple measurement technique may support air quality studies, e.g., in developing countries.
显示更多 [+] 显示较少 [-]Quantification of Shallow Groundwater Nutrient Dynamics in Septic Areas
2012
Ouyang, Ying | Zhang, Jia'en
Of all groundwater pollution sources, septic systems are the second largest source of groundwater nitrate contamination in USA. This study investigated shallow groundwater (SGW) nutrient dynamics in septic areas at the northern part of the Lower St. Johns River Basin, Florida, USA. Thirty-five SGW-monitoring wells, located at nine different urban areas served by septic systems, were used to collect the SGW samples seasonally and/or biweekly for a duration of 3 years from 2003 to 2006. Analytical results showed that there were 16 wells with nitrate concentrations exceeding the US Environmental Protection Agency's drinking water limit (10 mg L−1). There also were 11 and 14 wells with total Kjeldahl nitrogen (TKN) and total phosphorus (TP) concentrations, respectively, exceeding the ambient water quality criteria (0.9 mg L−1 for TKN and 0.04 mg L−1 for TP) recommended for rivers and streams in nutrient Ecoregion XII (Southeast USA). In general, site variations are much greater than seasonal variations in SGW nutrient concentrations. A negative correlation existed between nitrate/nitrite–nitrogen (NOx–N) and TKN as well as between NOx–N and ammonium ([Formula: see text]), whereas a positive correlation occurred between TKN and[Formula: see text]. Furthermore, a positive correlation was found between reduction and oxidation (redox) potential and water level, while no correlation was observed between potassium concentration and redox potential. This study demonstrates a need to investigate the potential adverse impacts of SGW nutrients from the septic areas upon the deeper groundwater quality due to the nutrient penetration and upon the surface water quality due to the nutrient discharge.
显示更多 [+] 显示较少 [-]