细化搜索
结果 981-990 的 6,560
Exogenous application of signaling molecules to enhance the resistance of legume-rhizobium symbiosis in Pb/Cd-contaminated soils 全文
2020
Fang, Linchuan | Ju, Wenliang | Yang, Congli | Jin, Xiaolian | Liu, Dongdong | Li, Mengdi | Yu, Jialuo | Zhao, Wei | Zhang, Chao
Being signaling molecules, nitric oxide (NO) and hydrogen sulfide (H₂S) can mediate a wide range of physiological processes caused by plant metal toxicity. Moreover, legume-rhizobium symbiosis has gained increasing attention in mitigating heavy metal stress. However, systematic regulatory mechanisms used for the exogenous application of signaling molecules to alter the resistance of legume-rhizobium symbiosis under metal stress are currently unknown. In this study, we examined the exogenous effects of sodium nitroprusside (SNP) as an NO donor additive and sodium hydrosulfide (NaHS) as a H₂S donor additive on the phytotoxicity and soil quality of alfalfa (Medicago sativa)-rhizobium symbiosis in lead/cadmium (Pb/Cd)-contaminated soils. Results showed that rhizobia inoculation markedly promoted alfalfa growth by increasing chlorophyll content, fresh weight, and plant height and biomass. Compared to the inoculated rhizobia treatment alone, the addition of NO and H₂S significantly reduced the bioaccumulation of Pb and Cd in alfalfa-rhizobium symbiosis, respectively, thus avoiding the phytotoxicity caused by the excessive presence of metals. The addition of signaling molecules also alleviated metal-induced phytotoxicity by increasing antioxidant enzyme activity and inhibiting the level of lipid peroxidation and reactive oxygen species (ROS) in legume-rhizobium symbiosis. Also, signaling molecules improved soil nutrient cycling, increased soil enzyme activities, and promoted rhizosphere bacterial community diversity. Both partial least squares path modeling (PLS-PM) and variation partitioning analysis (VPA) identified that using signaling molecules can improve plant growth by regulating major controlling variables (i.e., soil enzymes, soil nutrients, and microbial diversity/plant oxidative damage) in legume-rhizobium symbiosis. This study offers integrated insight that confirms that the exogenous application of signaling molecules can enhance the resistance of legume-rhizobium symbiosis under metal toxicity by regulating the biochemical response of the plant-soil system, thereby minimizing potential health risks.
显示更多 [+] 显示较少 [-]Remediation of heavy metal contaminated soils by organic acid extraction and electrochemical adsorption 全文
2020
Yang, Xiong | Liu, Lihu | Tan, Wenfeng | Liu, Chengshuai | Dang, Zhi | Qiu, Guohong
Remediation of heavy metal contaminated soils remains a global challenge. Here, low-molecular-weight organic acids were used to extract Cu and Zn from polluted soils, and the extracted heavy metals were subsequently adsorbed by activated carbon electrodes. The electrochemical adsorption mechanism as well as the influence of pH, organic acid type and voltage were investigated, and the soil remediation effect was further evaluated by the cultivation of rape. After extraction by citrate at initial pH 8.3 and electrochemical adsorption at 0.9 V for 7 d, the concentrations of total and bioavailable Cu in soils decreased from 1090 to 281 to 391 and 52 mg kg⁻¹, and those of Zn decreased from 262 to 39 to 208 and 30 mg kg⁻¹, respectively. Cu and Zn ions were mainly electrochemically adsorbed on the carbon cathode and anode, respectively, resulting in decreases of their concentrations to below 1 mg L⁻¹ in the leachate. The presence of organic acids improved the remediation performance in the order of citrate > oxalate > acetate. The decrease in the initial pH of citrate solution enhanced the removal rate of Zn, while seemed to have no effect on that of Cu. The removal capacity for heavy metals decreased with decreasing cell voltage from 0.9 to 0.3 V. In the rape cultivation experiment, the Cu and Zn contents in shoot and root were decreased by more than 50%, validating the soil remediation effect. The present work proposes a facile method for heavy metal removal from contaminated soils.
显示更多 [+] 显示较少 [-]Responses of the growth and physiological characteristics of Myriophyllum aquaticum to coexisting tetracyclines and copper in constructed wetland microcosms 全文
2020
Guo, Xuan | Liu, Mingming | Zhong, Hua | Li, Peng | Zhang, Chengjun | Wei, Dan | Zhao, Tongke
Antibiotic and heavy metal pollution of aquatic environments are issues of serious concern, and the macrophyte Myriophyllum aquaticum may provide a viable solution for the removal of these contaminants. However, the toxic effects of coexisting tetracyclines (TCs) and Cu(II) on this plant species are currently unclear. In the present study, we constructed wetland microcosms planted with M. aquaticum and spiked these with three TCs (tetracycline, oxytetracycline, and chlortetracycline) and Cu(II) at concentrations ranging from 100 to 10,000 μg/L to investigate how Cu(II) influences the growth and tolerance responses of plants to TCs. After 12 weeks, we found that TCs had accumulated in the plants, and that plant growth and characteristics were significantly affected by the levels of both TCs and Cu(II). While low Cu(II) levels had a synergistic effect on the accumulation of TCs, high levels were observed to reduce accumulation. However, low levels of TCs and Cu(II) had a hormesis effect on plant growth, with plant biomass and leaf chlorophyll content decreasing and the malondialdehyde content and activities of antioxidant enzymes gradually increasing with an increase in TC dosage. The coexistence of low levels of Cu(II) was, however, found to alleviate these adverse effects. Principal component analysis revealed a close relationship among plant biomass, chlorophyll content, malondialdehyde content, and antioxidant enzyme activities. Considering that the Cu/TC ratio was shown to markedly affect M. aquaticum growth, the respective proportions of these pollutants should be taken into consideration in the future design of constructed wetlands.
显示更多 [+] 显示较少 [-]Threshold effects of air pollution and climate change on understory plant communities at forested sites in the eastern United States 全文
2020
McDonnell, T.C. | Reinds, G.J. | Wamelink, G.W.W. | Goedhart, P.W. | Posch, M. | Sullivan, T.J. | Clark, C.M.
Forest understory plant communities in the eastern United States are often diverse and are potentially sensitive to changes in climate and atmospheric inputs of nitrogen caused by air pollution. In recent years, empirical and processed-based mathematical models have been developed to investigate such changes in plant communities. In the study reported here, a robust set of understory vegetation response functions (expressed as version 2 of the Probability of Occurrence of Plant Species model for the United States [US-PROPS v2]) was developed based on observations of forest understory and grassland plant species presence/absence and associated abiotic characteristics derived from spatial datasets. Improvements to the US-PROPS model, relative to version 1, were mostly focused on inclusion of additional input data, development of custom species-level input datasets, and implementation of methods to address uncertainty. We investigated the application of US-PROPS v2 to evaluate the potential impacts of atmospheric nitrogen (N) and sulfur (S) deposition, and climate change on forest ecosystems at three forested sites located in New Hampshire, Virginia, and Tennessee in the eastern United States. Species-level N and S critical loads (CLs) were determined under ambient deposition at all three modeled sites. The lowest species-level CLs of N deposition at each site were between 2 and 11 kg N/ha/yr. Similarly, the lowest CLs of S deposition, based on the predicted soil pH response, were less than 2 kg S/ha/yr among the three sites. Critical load exceedance was found at all three model sites. The New Hampshire site included the largest percentage of species in exceedance. Simulated warming air temperature typically resulted in lower maximum occurrence probability, which contributed to lower CLs of N and S deposition. The US-PROPS v2 model, together with the PROPS-CLF model to derive CL functions, can be used to develop site-specific CLs for understory plants within broad regions of the United States. This study demonstrates that species-level CLs of N and S deposition are spatially variable according to the climate, light availability, and soil characteristics at a given location. Although the species niche models generally performed well in predicting occurrence probability, there remains uncertainty with respect to the accuracy of reported CLs. As such, the specific CLs reported here should be considered as preliminary estimates.
显示更多 [+] 显示较少 [-]Effects of nanoplastics at predicted environmental concentration on Daphnia pulex after exposure through multiple generations 全文
2020
Liu, Zhiquan | Cai, Mingqi | Wu, Donglei | Yu, Ping | Jiao, Yang | Jiang, Qichen | Zhao, Yunlong
The biological effects of nanoplastics are a growing concern. However, most studies have focused on exposure to high concentrations or short-term exposure. The potential effects of exposure to low environmental nanoplastic concentrations over the long-term and across multiple generations remain unclear. In the present study, Daphnia pulex was exposed over three 21-day generations to a typical environmental nanoplastic concentration (1 μg/L) and the effects were investigated at physiological (growth and reproduction), gene transcription and enzyme activity levels. Chronic exposure did not affect the survival or body length of D. pulex, whereas the growth rate and reproduction were influenced in the F2 generation. Molecular responses indicated that environmental nanoplastic concentrations can modulate the response of antioxidant defenses, vitellogenin synthesis, development, and energy production in the F0-F1 generations, and prolongation resulted in inhibitory effects on antioxidant responses in F2 individuals. Some recovery was observed in the recovery group, but reproduction and stress defenses were significantly induced. Taken together, these results suggest that D. pulex recovery from chronic exposure to nanoplastic may take several generations, and that nanoplastics have potent long-term toxic effects on D. pulex. The findings highlight the importance of multigenerational and chronic biological evaluations to assess risks of emerging pollution.
显示更多 [+] 显示较少 [-]Enzyme assays and toxicity of pig abattoir waste in Eisenia andrei 全文
2020
Ramires, Maiara Figueiredo | Lorensi de Souza, Eduardo | de Castro Vasconcelos, Márlon | Clasen, Bárbara Estevão | Fontanive, Daniel Erison | Bianchetto, Renan | Grasel Cezimbra, Júlio Cesar | Antoniolli, Zaida Inês
Due to high global demand, large amounts of abbattoir waste are generated from pork production. Mismanagement of abattoir waste on agricultural lands can result in soil and water contamination with pathogens and contaminants like metals and nutrients. Therefore, possible effects on soil organisms prior to application should be evaluated. Thus, the aim of this study was to determine the effects of fresh pig abattoir waste (PAWf) and waste after stabilization processes on E. andrei through tests of avoidance behavior, acute toxicity and chronic toxicity. In order to do this, the waste was evaluated fresh (i.e., non-treated), and after aerated composting (PAWa), natural composting (PAWn) and vermicomposting (PAWv). In addition, we used a natural soil with no history of agricultural use as control soil. The evaluation was based on avoidance behavior, mortality, initial and final earthworm weight, and reproduction, in addition to a set of enzyme assays formed by acetylcholinesterase, lipid peroxidation, catalase and glutathione S-transferase measured over time. The ecotoxicological results showed that PAWf and PAWa increased AChE activity at different experimental periods, while PAWn decreased activity at 14 days compared to the control. PAWf and PAWa increased TBARS levels at 7 and 14 days, respectively. CAT activity decreased at 3, 7 and 14 days in PAWv, while GST activity increased at 3 days in PAWa and at 3 and 14 days in PAWf compared to the control. In the acute toxicity test, PAWa and PAWn had a toxic effect on E. andrei, resulting in 100% mortality at 14 days of exposure. Based on our findings, pig abattoir waste should undergo vermicomposting prior to agricultural application to soils.
显示更多 [+] 显示较少 [-]Metal accumulation in the acrocarp moss Atrichum undulatum under controlled conditions 全文
2020
Sabovljević, Marko S. | Weidinger, Marieluise | Sabovljević, Aneta D. | Stanković, Jelena | Adlassnig, Wolfram | Lang, Ingeborg
Mosses are frequently used to monitor atmospheric metal contamination but few studies on metal adsorption under controlled conditions are available. Here, the accumulation of the heavy metals copper and zinc was studied in the acrocarp moss Atrichum undulatum. An in vitro culture of A. undulatum was established and the same line, size and equally old remets were exposed to six different treatments representing various metal exposure times and washing scenarios as rain simulation. The metal treatments were done in copper and zinc salts (Cu-acetate, CuSO4, ZnSO4 and ZnCl2, respectively). Energy-Dispersive X-ray microanalysis (EDX) was employed to detect bound heavy metals on the moss plantlets. Element distribution in stems and leaves was measured separately. The aqueous solution of metal salts facilitated an adsorption of both elements in the moss tissue as compared to solid medium. Furthermore, A. undulatum can tolerate pollution of zinc and copper in a distinctive extent; our data point towards a higher zinc tolerance whereas copper is rather harmful. However, semi-quantitatively, less zinc was detected within the moss tissue compared to copper. Interestingly, a strong positive correlation between the accumulation of copper/zinc and iron, and a strong negative correlation between copper/zinc and magnesium, respectively, was documented.
显示更多 [+] 显示较少 [-]Evidence for rapid gut clearance of microplastic polyester fibers fed to Chinook salmon: A tank study 全文
2020
Spanjer, Andrew R. | Liedtke, Theresa L. | Conn, Kathleen E. | Weiland, Lisa K. | Black, Robert W. | Godfrey, Nathan
Marine and freshwater plastic pollution is a challenging issue receiving large amounts of research and media attention. Yet, few studies have documented the impact of microplastic ingestion to aquatic organisms. In the Pacific Northwest, Chinook salmon are a culturally and commercially significant fish species. The presence of marine and freshwater microplastic pollution is well documented in Chinook salmon habitat, yet no research has investigated the impacts to salmon from microplastic ingestion. The majority of the marine microplastics found in the Salish Sea are microfibers, synthetic extruded polymers that come from commonly worn clothing. To understand the potential impacts of microfiber ingestion to fish, we ran a feeding experiment with juvenile Chinook salmon to determine if ingested fibers are retained or digestion rates altered over a 10 day digestion period. The experiment was completed in two trials, each consisted of 20 control and 20 treatment fish. Treatment fish were each fed an amended ration of 12 food pellets spiked with 20 polyester microfibers and control fish were fed the same ration without added microfibers. Fish were sampled at day 0, 3, 5, 7, and 10 to assess if fibers were retained in their gastrointestinal tract and to determine the rate of digestion. Fibers for the experiment came from washing a red polyester fleece jacket in a microfiber retention bag. Fibers had a mean length of 4.98 mm. Results showed fish were able to clear up to 94% of fed fibers over 10 days. Differences in mean gastrointestinal mass were not statistically significant at any sampled time between treatment and controls, suggesting that the ingestion of microfibers did not alter digestion rates. Further work is needed to understand if repeated exposures, expected in the environment, alter digestion or food assimilation for growth.
显示更多 [+] 显示较少 [-]Calculating sources of combustion-derived particulates using 1-nitropyrene and pyrene as markers 全文
2020
Hayakawa, Kazuichi | Tang, Ning | Toriba, Akira | Nagato, Edward G.
Airborne particulate matter (PM) contains numerous hazardous polycyclic aromatic hydrocarbons (PAHs) as well as their functionalized congeners. However, the lack of useful methods to identify the sources of PM has hindered the development of researches in atmospheric and public health fields. This report proposes a new method for estimating the source contribution of combustion-derived particulate (Pc) by using 1-nitropyrene (1-NP) and pyrene (Pyr) as markers. This is premised on the fact that the formation of nitrogen oxides in the flame gas and the subsequent nitration of PAHs are functions of combustion temperature and therefore the concentration ratios of NPAHs to PAHs are highly temperature dependent. This method divides combustion sources into two groups - high and low temperatures - which here are respectively represented by automobile engine and coal combustion in urban areas. Formulae are derived for combustion-derived particulate (Pc), whose fraction in the total particulate is y (0 < y < 1), and particulates from combustion sources with high temperatures (Pₕ), whose fraction in Pc is x (0 < x < 1), and low temperatures (Pₗ), whose fraction is (1 -x). When concentrations of 1-NP and Pyr in Pₕ and Pₗ are known, values x and y can be calculated from the formulae by determining atmospheric 1-NP and Pyr concentrations at monitoring sites. Then atmospheric concentrations of Pc, Pₕ and Pₗ can be calculated. The proposed method has been applied for total suspended particulate matter (TSP) samples collected in Kanazawa and Kitakyushu (Japan) and Beijing (China) having different types of atmospheric pollution to clarify the change of contributions of automobiles and coal combustion.
显示更多 [+] 显示较少 [-]Effects of combustion condition and biomass type on the light absorption of fine organic aerosols from fresh biomass burning emissions over Korea 全文
2020
Park, Seungshik | Yu, Geun-Hye | Bae, Min-Suk
In this study, the light absorption properties of fine organic aerosols from the burning emissions of four biomass materials were examined using UV-spectrophotometry and Aethalometer-measurements, respectively. For wood chips and palm trees, the burning experiments were carried out with different combustion temperatures (200, 250, and 300 οC) in an adjustable, electrically heated combustor. The light absorptions of water and methanol extracts of aerosols, and smoke particles showed strong spectral dependence on the burning emissions of all biomass materials. However, the burning aerosols of wood chips showed stronger absorption than those of the other biomass burning (BB) emissions. For the burning aerosols of wood chips and palm trees, organic carbon/elemental carbon (OC/EC) decreased as the combustion temperature increased from 200 to 300 °C. Absorption Ångström exponent (AAE) values tended to decrease when combustion temperature increased for smoke aerosols and methanol extracts in smoke samples. The mass absorption efficiency at 365 nm (MAE₃₆₅, m² g⁻¹∙C⁻¹) of water- and methanol-extractable OC fractions was highest in wood chip burning smoke samples. MAE₃₆₅ values of methanol extracts for rice straw, pine needles, wood chips, and palm trees burning emission samples were 1.35, 0.92, 2.36–3.37, and 0.86–1.42, respectively. For wood chip and palm tree burning emissions, AAE₃₂₀–₄₃₀ₙₘ values of methanol extracts were strongly correlated with OC/EC (i.e., combustion temperature) with slopes of 0.11 (p < 0.001) and 0.02 (p < 0.001), and R² values of 0.87 and 0.74, respectively. Moreover, a linear regression between MAE₃₆₅ of methanol extractable OC and OC/EC showed slopes of −0.05 (p < 0.001) and −0.004 (p < 0.001) and R² of 0.72 and 0.74, respectively. The results of this study clearly demonstrate that burning condition and biomass type influence the light absorption properties of organic aerosols from BB emissions.
显示更多 [+] 显示较少 [-]