细化搜索
结果 981-990 的 7,989
Seaweeds fast EDC bioremediation: Supporting evidence of EE2 and BPA degradation by the red seaweed Gracilaria sp., and a proposed model for the remedy of marine-borne phenol pollutants
2021
Astrahan, Peleg | Korzen, Leor | Khanin, Marina | Sharoni, Yoav | Israel, Alvaro
In the last few decades, Endocrine Disrupting Chemicals (EDCs) have taken significant roles in creating harmful effects to aquatic organisms. Many proposed treatment applications are time consuming, expensive and focus mainly on waste water treatment plants (WWTP), which are indeed a major aquatic polluting source. Nonetheless, the marine environment is the ultimate sink of many pollutants, e.g. EDCs, and has been largely neglected mainly due to the challenge in treating such salty and immense open natural ecosystems. In this study we describe the bromination and the yet unpresented degradation process of high concentrations (5 mg/L) of phenolic EDCs, by the marine red macroalgaeGracilaria sp. As shown, 17α-Ethinylestradiol (EE2), a well-known contraceptive drug, and one of the most persistent phenol EDCs in the environment, was eliminated from both the medium and tissues of the macroalga, in addition to the degradation of all metabolites as verified by the nil estrogenic activity recorded in the medium. Validation of the proposed bromination-degradation route was reinforced by identifying Bisphenol A (BPA) brominated degradation products only, following 168H of incubation in the presence of Gracilaria sp. As demonstrated in this assay for EE2, BPA and finally for paracetamol, it is likely that the phenol scavenging activity is nonspecific and, thus, possibly even a wider scope of various other phenol-based pollutants might be treated in coastal waters. As far as we know, Gracilaria sp. is the only marine sessile organism able of degrading various phenol based pollutants. The worldwide distribution of many Gracilaria species and their wide aquaculture knowhow, suggest that bioremediation based on these seaweeds is a possible cost effective progressive solution to the treatment of a wide scope of phenols at the marine environment.
显示更多 [+] 显示较少 [-]Targeting the right parameters in PAH remediation studies
2021
Davin, Marie | Colinet, Gilles | Fauconnier, Marie-Laure
Contaminated land burdens the economy of many countries and must be dealt with.Researchers have published thousands of documents studying and developing soil and sediment remediation treatments. Amongst the targeted pollutants are the polycyclic aromatic hydrocarbons (PAHs), described as a class of persistent organic compounds, potentially harmful to ecosystems and living organisms.The present paper reviews and discusses three scientific trends that are leading current PAH-contaminated soil/sediment remediation studies and management.First, the choice of compounds that are being studied and targeted in the scientific literature is discussed, and we suggest that the classical 16 US-EPA PAH compounds might no longer be sufficient to meet current environmental challenges.Second, we discuss the choice of experimental material in remediation studies. Using bibliometric measures, we show the lack of PAH remediation trials based on co-contaminated or aged-contaminated material.Finally, the systematic use of the recently validated bioavailability measurement protocol (ISO/TS 16751) in remediation trials is discussed, and we suggest it should be implemented as a tool to improve remediation processes and management strategies.
显示更多 [+] 显示较少 [-]Acute toxicity of Bisphenol A (BPA) to tropical marine and estuarine species from different trophic groups
2021
Naveira, Clarissa | Rodrigues, Nathália | Santos, Fernanda S. | Santos, Luciano N. | Neves, Raquel A.F.
BPA is chemical pollutant of very high concern due to its toxicity to the environment and risks for human health. Environmental concern consists in BPA entrance into aquatic ecosystems due to acute and chronic toxicity to invertebrates and vertebrates. This study aimed to determine acute BPA toxicity to tropical estuarine-marine species of four trophic levels and integrate BPA toxicity values using species sensitivity distribution (SSD) analysis. Our hypothesis is that BPA toxicity increases towards higher trophic levels. Microalga (Tetraselmis sp.), zooplanktonic grazer (Artemia salina), deposit-feeder invertebrate (Heleobia australis), and omnivorous fish (Poecilia vivipara) were chosen as experimental models. Tetraselmis sp. showed the highest BPA tolerance, without a concentration-dependent response. Species sensitivity have increased from A. salina (LC₅₀,₉₆ₕ = 107.2 mg L⁻¹), followed by H. australis (LC₅₀,₉₆ₕ = 11.53.5 mg L⁻¹), to P. vivipara (LC₅₀,₉₆ₕ = 3.5 mg L⁻¹). Despite the toxicity hierarchy towards trophic levels, which partially supported our hypothesis, SSD did not evidence a clear pattern among estuarine-marine trophic groups. Our study disclosed the sensitivity of not yet investigated species to BPA and, in an integrative way, highlighted BPA toxic effects at different trophic levels. Although estimated acute hazardous concentration (HC5 = 1.18 mg L⁻¹) for estuarine and marine species was higher than environmentally relevant concentrations, sublethal adverse effects induced by BPA exposure may lead to unbalances in population levels and consequently affect the ecological functioning of tropical coastal systems.
显示更多 [+] 显示较少 [-]Occurrence and seasonal distribution of five selected endocrine-disrupting compounds in wastewater treatment plants of the Metropolitan Area of Monterrey, Mexico: The role of water quality parameters
2021
López-Velázquez, Khirbet | Guzmán-Mar, Jorge L. | Saldarriaga-Noreña, Hugo A. | Murillo-Tovar, Mario A. | Hinojosa-Reyes, Laura | Villanueva-Rodríguez, Minerva
Five endocrine-disrupting compounds (EDCs) were determined in four urban wastewater treatment plants (WWTPs) of the Metropolitan Area of Monterrey (MAM) in two seasonal periods (winter and summer). The MAM, one of the most urbanized areas in Mexico, is characterized by high industrial activity and population density, leading to extensive use of several EDCs. In the MAM, ∼90% of urban and industrial wastewater is treated in WWTPs, where EDCs can be partially eliminated. In this work, dissolved levels of 17β-estradiol (E2), 17α-ethinyl estradiol (EE2), bisphenol A (BPA), 4-nonylphenol (4NP), and 4-tert-octylphenol (4TOP) in wastewater were determined. The EDCs’ determination was carried out through solid-phase extraction (SPE) and gas chromatography coupled to mass spectrometry (GC-MS). High EDCs levels (0.4–450 ng/L) were found in the influents of WWTPs, while concentrations in the effluents ranged from 0.2 to 26.8 ng/L, with E2, EE2, and 4TOP being the most persistent. The Spearman correlation analysis revealed the association between E2 and EE2 (r = 0.4835, p < 0.05), and between BPA and 4NP (r = 0.5180, p < 0.05), suggesting that these EDCs have similar sources. Also, E2, BPA, and 4TOP were positively correlated with the chemical oxygen demand (COD), biochemical oxygen demand (BOD), and total suspended solids (TSS) (r = 0.4080–0.5694, p < 0.05), indicating the association of the EDCs with the organic matter in the wastewater. The factor analysis confirmed the significant correlation of COD, BOD, TSS, temperature, and pH with the high occurrence of 4TOP during the summer. It was also confirmed that summer warmer temperatures favored the removal of BPA and 4NP in the studied WWTPs. Finally, the studied sites were classified by cluster analysis in three groups, revealing the impact that seasonality has on the behavior of the selected EDCs.
显示更多 [+] 显示较少 [-]Seasonal variation and source identification of heavy metal(loid) contamination in peri-urban farms of Hue city, Vietnam
2021
Pham, Viet-Dung | Fatimah, Mila-Siti | Sasaki, Atsushi | Duong, Van-Hieu | Pham, Khac-Lieu | Susan, Praise | Watanabe, Tōru
This study focused on the seasonal variation and source identification of heavy metals (HMs) while considering effects of municipal wastewater (MWW) in peri-urban farms of Hue city, central Vietnam. Moreover, associated non-carcinogenic and carcinogenic health risks from consuming vegetables containing HMs were also assessed considering the hazard quotient and cancer risk, respectively. Therefore, concentrations of Fe, Mn, Zn, Cu, Cr, Cd, Pb, and As were determined in irrigation water, soil, and lettuce samples collected during dry and wet seasons from one upstream site where irrigation water has no impact on MWW as well as from two downstream sites in farms on the outskirt of the city. Although irrigation water and soil in the same farms were not polluted as strongly, lettuce samples were polluted with Cd, Zn, and Pb. Furthermore, levels of soil Cu and As and HMs (except for Cu) in lettuce in the wet season were significantly higher (p < 0.05) than those in the dry season, indicating the impact of MWW with seasonal change. The health risk assessment via lettuce consumption demonstrated an unacceptable carcinogenic risk owing to Cd and a cumulative non-carcinogenic risk owing to selected HMs in the lettuce, while all other risks were negligible. Correlation and principal component analyses were performed to identify HM sources, indicating that Cu, Zn, Cd, Pb, Cr, and As in irrigation water and soil could have anthropogenic sources (e.g., untreated MWW, fertilizer use); meanwhile, irrigation-water and soil Fe, Mn, As, and Cr could originate from non-anthropogenic sources (e.g., parent materials weathering). This study revealed that rapid urbanization together with high precipitation leading to urban floods in Hue city was a significant factor spreading HMs in agricultural farms, suggesting the importance of wastewater treatment system, which can reduce the HM load in the city to protect the local food production.
显示更多 [+] 显示较少 [-]Effects of inhomogeneous ground-level pollutant sources under different wind directions
2021
Wang, Huanhuan | Ngan, Keith
Effects of source inhomogeneity on pollutant dispersion from a cubic building array are investigated as a function of the external wind direction. Using building-resolving large-eddy simulation, it is found that the results depend strongly on the source location and source uniformity inside a near-field region defined by a radius of homogenisation (RAD) based on the spatial autocorrelation of the pollutant concentration. The sensitivity of the RAD to the source location changes abruptly around 30° and is greatly reduced for wind angles between 30 and 45°, in agreement with velocity statistics and the mean horizontal streamlines. The optimal source allocation, which is a proxy for emissions from time-dependent traffic, also changes around 30°. This work clarifies the relationship between inhomogeneous velocity and pollutant statistics and may be applied to the formulation of traffic control policy.
显示更多 [+] 显示较少 [-]Polystyrene microplastics disrupt the blood-testis barrier integrity through ROS-Mediated imbalance of mTORC1 and mTORC2
2021
Wei, Yuexin | Zhou, Yu | Long, Chunlan | Wu, Huan | Hong, Yifan | Fu, Yan | Wang, Junke | Wu, Yuhao | Shen, Lianju | Wei, Guanghui
It has been found that polystyrene microplastics (PS-MPs) exposure leads to decreased sperm quality and quantity, and we aim to explore the underlying mechanisms. Therefore, we gave 20 mg/kg body weight (bw) and 40 mg/kg bw 4 μm and 10 μm PS-MPs to male Balb/c mice by gavage. RNA sequencing of testes was performed. After PS-MPs exposure, blood-testis barrier (BTB) integrity was impaired. Since cytoskeleton was closely related to BTB integrity maintenance, and cytoskeleton disorganization could be induced by PS-MPs exposure in the testis, which resulted in the truncation of actin filaments and disruption of BTB integrity. Such processes were attributed to the differential expression of Arp3 and Eps8 (two of the most important actin-binding proteins). According to the transcriptome sequencing results, we examined the oxidative stress level in the testes and Sertoli cells. We found that PS-MPs exposure induced increased reactive oxygen species (ROS) level, which destroyed the balance between mTORC1 and mTORC2 (the mTORC1 activity was increased, while the mTORC2 activity was decreased). In conclusion, PS-MPs induced the imbalance of mTORC1 and mTORC2 via the ROS burst, and altered the expression profile of actin-binding proteins, resulting in F-actin disorganization and reduced expression of junctional proteins in the BTB. Eventually PS-MPs led to BTB integrity disruption and spermatogenesis dysfunction.
显示更多 [+] 显示较少 [-]Characterization of polycyclic aromatic compounds in historically contaminated soil by targeted and non-targeted chemical analysis combined with in vitro bioassay
2021
Titaley, Ivan A. | Lam, Monika M. | Bülow, Rebecca | Enell, Anja | Wiberg, Karin | Larsson, Maria
Soil samples from a contaminated site in Sweden were analyzed to identify the presence of 78 polycyclic aromatic compounds (PACs) using gas chromatography coupled with mass spectrometry (GC-MS). The target analysis revealed large contributions not only from polycyclic aromatic hydrocarbons (PAHs), but also from alkylated- and oxygenated-PAHs (alkyl- and oxy-PAHs, respectively), and N-heterocyclics (NPACs). PAC profiles indicated primarily pyrogenic sources, although contribution of petrogenic sources was also observed in one sample as indicated by a high ratio of alkylated naphthalene compared to naphthalene. The aryl hydrocarbon receptor (AhR)-activity of the soil extracts was assessed using the H4IIe-pGudluc 1.1 cells bioassay. When compared with the calculated total AhR-activity of the PACs in the target list, 35–97% of the observed bioassay activity could be explained by 62 PACs with relative potency factors (REPs). The samples were further screened using GC coupled with Orbitrap™ high resolution MS (GC-HRMS) to investigate the presence of other PACs that could potentially contribute to the AhR-activity of the extracts. 114 unique candidate compounds were tentatively identified and divided into four groups based on their AhR-activity and environmental occurrence. Twelve substances satisfied all the criteria, and these compounds are suggested to be included in regular screening in future studies, although their identities were not confirmed by standards in this study. High unexplained bio-TEQ fractions in three of the samples may be explained by tentatively identified compounds (n = 35) with high potential of being toxic. This study demonstrates the benefit of combining targeted and non-targeted chemical analysis with bioassay analysis to assess the diversity and effects of PACs at contaminated sites. The applied prioritization strategy revealed a number of tentatively identified compounds, which likely contributed to the overall bioactivity of the soil extracts.
显示更多 [+] 显示较少 [-]Antibiotics in mariculture organisms of different growth stages: Tissue-specific bioaccumulation and influencing factors
2021
Zhang, Xuanrui | Zhang, Jiachao | Han, Qianfan | Wang, Xiaoli | Wang, Shuguang | Yuan, Xianzheng | Zhang, Baiyu | Zhao, Shan
Maricultured organisms are chronically exposed to water containing antibiotics but the bioaccumulative behavior of antibiotics in exposed organisms at different growth stages has received little attention. Here, we investigated the concentrations and tissue-specific bioaccumulation characteristics of 19 antibiotics during three growth stages (youth stage, growth stage, and adult stage) of various organisms (Scophthalmus maximus, Penaeus vannamei, Penaeus japonicus, and Apostichopus japonicus) cultivated in typical marine aquaculture regions, and explored the factors that could affect the bioaccumulation of antibiotics. Tetracyclines (TCs) and fluoroquinolones (FQs) were the dominant antibiotics in all organisms, and the total concentrations of the target antibiotics in fish (S. maximus) were significantly higher than those in shrimp (P. vannamei and P. japonicus) and sea cucumber (A. japonicus) (p < 0.01). The bioaccumulation capacity of a class of statistically significant antibiotics in most samples was strongest during the youth stage and weakest during the adult stage. The antibiotics exhibited higher bioaccumulation capacity in lipid-rich tissues (fish liver and shrimp head) or respiratory organs (fish gill) than muscle. Our results also reveal significant metabolic transformation of enrofloxacin in fish. Different from previous studies, the logarithm bioaccumulation factor (log BAF) was positively correlated with log Dₗᵢₚw in low-biotransformation tissues (fish gill and muscle) rather than lipid-rich tissues (fish liver). Based on the calculated hazard quotients (HQ), doxycycline in fish muscle may pose a distinct risk to human health, which deserves special attention. Overall, these results provide insight into the bioaccumulation patterns of antibiotics during different growth stages and tissues of maricultured organisms.
显示更多 [+] 显示较少 [-]Ambient temperature and genome-wide DNA methylation: A twin and family study in Australia
2021
Xu, Rongbin | Li, Shuai | Li, Shanshan | Wong, Ee Ming | Southey, Melissa C. | Hopper, John L. | Abramson, Michael J. | Guo, Yuming
Little is known about the association between ambient temperature and DNA methylation, which is a potential biological process through which ambient temperature affects health. This study aimed to evaluate the association between ambient temperature and DNA methylation across human genome. We included 479 Australian women, including 132 twin pairs and 215 sisters of these twins. Blood-derived DNA methylation was measured using the HumanMethylation450 BeadChip array. Data on average ambient temperature during eight different exposure windows [lag0d (the blood draw day), lag0-7d (the current day and previous seven days prior to blood draw), lag0-14d, lag0-21d, lag0-28d, lag0-90d, lag0-180d, and lag0-365d)] was linked to each participant's home address. For each cytosine-guanine dinucleotide (CpG), we evaluated the association between its methylation level and temperature using generalized estimating equations (GEE), adjusting for important covariates. We used comb-p and DMRcate to identify differentially methylated regions (DMRs). We identified 31 CpGs at which blood DNA methylation were significantly associated with ambient temperature with false discovery rate [FDR] < 0.05. There were 82 significant DMRs identified by both comb-p (Sidak p-value < 0.01) and DMRcate (FDR < 0.01). Most of these CpGs and DMRs only showed association with temperature during one specific exposure window. These CpGs and DMRs were mapped to 85 genes. These related genes have been related to many human chronic diseases or phenotypes (e.g., diabetes, arthritis, breast cancer, depression, asthma, body height) in previous studies. The signals of short-term windows (lag0d and lag0-21d) showed enrichment in biological processes related to cell adhesion. In conclusion, short-, medium-, and long-term exposures to ambient temperature were all associated with blood DNA methylation, but the target genomic loci varied by exposure window. These differential methylation signals may serve as potential biomarkers to understand the health impacts of temperature.
显示更多 [+] 显示较少 [-]