细化搜索
结果 991-1000 的 4,308
Chlorpyrifos-induced oxidative damage is reduced under warming and predation risk: Explaining antagonistic interactions with a pesticide 全文
2017
Janssens, Lizanne | Stoks, Robby
Interactions with pollutants and environmental factors are poorly studied for physiological traits. Yet physiological traits are important for explaining and predicting interactions at higher levels of organization. We investigated the single and combined impact of the pesticide chlorpyrifos, predation risk and warming on endpoints related to oxidative stress in the damselfly Enallagma cyathigerum. We thereby integrated information on reactive oxygen species (ROS), antioxidant enzymes and oxidative damage. All three treatments impacted the oxidative stress levels and for most traits the pesticide interacted antagonistically with warming or predation risk. Chlorpyrifos exposure resulted in increased ROS levels, decreased antioxidant defence and increased oxidative damage compared to the control situation. Under warming, the pesticide-induced increase in oxidative stress was less strong and the investment in antioxidant defence higher. Although both the pesticide and predation risk increased oxidative damage, the effects of the pesticide on oxidative damage were less strong in the presence of predator cues (at 20 °C). Despite the weaker pesticide-induced effects under predation risk, the combination of the pesticide and predator cues consistently caused the highest ROS levels, the lowest antioxidant defence and the highest oxidative damage, indicating the importance of cumulative stressor effects for impairing fitness. Our results provide the first evidence for antagonistic interactions of warming and predation risk with a pollutant for physiological traits. We identified two general mechanisms that may generate antagonistic interactions for oxidative stress: cross-tolerance and the maximum cumulative levels of damage.
显示更多 [+] 显示较少 [-]Effects of PM2.5 exposure on the Notch signaling pathway and immune imbalance in chronic obstructive pulmonary disease 全文
2017
Gu, Xing-yu | Chu, Xu | Zeng, Xiao-Li | Bao, Hai-Rong | Liu, Xiao-Ju
Chronic Obstructive Pulmonary Disease (COPD) is associated with T lymphocytes subset (Th1/Th2, Th17/Treg) imbalance. Notch signaling pathway plays a key role in the development of the adaptive immunity. The immune disorder induced by fine particulate matter (PM2.5) is related to COPD. The aim of this study was to investigate the mechanism by which PM2.5 influences the Notch signaling pathway leading to worsening immune disorder and accelerating COPD development. A COPD mouse model was established by cigarette smoke exposure. PM2.5 exposure was performed by aerosol inhalation. γ-secretase inhibitor (GSI) was given using intraperitoneal injection. Splenic T lymphocytes were purified using a density gradient centrifugation method. CD4+ T lymphocyte subsets (Th1/Th2, Th17/Treg) were detected using flow cytometry. mRNA and proteins of Notch1/2/3/4, Hes1/5, and Hey1 were detected using RT-PCR and Western blot. Serum INF-γ, IL-4, IL-17 and IL-10 concentrations were measured using ELISA. The results showed that in COPD mice Th1% and Th17%, Th1/Th2 and Th17/Treg were increased, and the levels of mRNA and protein in Notch1/2/3/4, Hes1/5, and Hey1 and serum INF-γ and IL-17 concentrations were significantly increased, and Th2%, Treg%, and serum IL-4 and IL-10 concentrations were significantly decreased. COPD Mice have Th1- and Th17-mediated immune disorder, and the Notch signaling pathway is in an overactivated state. PM2.5 promotes the overactivation of the Notch signaling pathway and aggravates the immune disorder of COPD. GSI can partially inhibit the activation of the Notch signaling pathway and alleviate the immune disorder under basal state and the immune disorder of COPD caused by PM2.5. This result suggests that PM2.5 is involved in the immune disorder of mice with COPD by affecting the Notch signaling pathway and that PM2.5 aggravates COPD.
显示更多 [+] 显示较少 [-]Linking pollutant exposure of humpback whales breeding in the Indian Ocean to their feeding habits and feeding areas off Antarctica 全文
2017
Dāsa, Kr̥shṇā | Malarvannan, Govindan | Dirtu, Alin | Dulau, Violaine | Dumont, Magali | Lepoint, Gilles | Mongin, Philippe | Covaci, Adrian
Linking pollutant exposure of humpback whales breeding in the Indian Ocean to their feeding habits and feeding areas off Antarctica 全文
2017
Dāsa, Kr̥shṇā | Malarvannan, Govindan | Dirtu, Alin | Dulau, Violaine | Dumont, Magali | Lepoint, Gilles | Mongin, Philippe | Covaci, Adrian
Humpback whales, Megaptera novaeangliae, breeding off la Reunion Island (Indian Ocean) undergo large-scale seasonal migrations between summer feeding grounds near Antarctica and their reproductive winter grounds in the Indian Ocean. The main scope of the current study was to investigate chemical exposure of humpback whales breeding in the Indian Ocean by providing the first published data on this breeding stock concerning persistent organic pollutants (POPs), namely polychlorinated biphenyls (PCBs), hexachlorobenzene (HCB), hexachlorocyclohexanes (HCHs), DDT and its metabolites (DDTs), chlordane compounds (CHLs), polybrominated diphenyl ethers (PBDEs), and methoxylated PBDEs (MeO-PBDEs). Analyses of stable isotopes δ13C and δ15N in skin resulted in further insight in their feeding ecology, which was in agreement with a diet focused mainly on low trophic level prey species, such as krill from Antarctica. POPs were measured in all humpback whales in the order of HCB > DDTs > CHLs > HCHs > PCBs > PBDEs > MeO-BDEs. HCB (median: 24 ng g−1 lw) and DDTs (median: 7.7 ng g−1 lw) were the predominant compounds in all whale biopsies. Among DDT compounds, p,p′-DDE was the major organohalogenated pollutant, reflecting its long-term accumulation in humpback whales. Significantly lower concentrations of HCB and DDTs were found in females than in males (p < 0.001). Other compounds were similar between the two genders (p > 0.05). Differences in the HCB and DDTs suggested gender-specific transfer of some compounds to the offspring. POP concentrations were lower than previously reported results for humpback whales sampled near the Antarctic Peninsula, suggesting potential influence of their nutritional status and may indicate different exposures of the whales according to their feeding zones. Further investigations are required to assess exposure of southern humpback whales throughout their feeding zones.
显示更多 [+] 显示较少 [-]Linking pollutant exposure of humpback whales breeding in the Indian Ocean to their feeding habits and feeding areas off Antarctica 全文
2017
Das, Krishna | Malarvannan, Govindan | Dirtu, Alin | Dulau, Violaine | Dumont, Magali | Lepoint, Gilles | Mongin, Philippe | Covaci, Adrian | MARE - Centre Interfacultaire de Recherches en Océanologie - ULiège
peer reviewed | Humpback whales, Megaptera novaeangliae, breeding off la Reunion Island (Indian Ocean) undergo large-scale seasonal migrations between summer feeding grounds near Antarctica and their reproductive winter grounds in the Indian Ocean. The main scope of the current study was to investigate chemical exposure of humpback whales breeding in the Indian Ocean by providing the first published data on this breeding stock concerning persistent organic pollutants (POPs), namely polychlorinated biphenyls (PCBs), hexachlorobenzene (HCB), hexachlorocyclohexanes (HCHs), DDT and its metabolites (DDTs), chlordane compounds (CHLs), polybrominated diphenyl ethers (PBDEs), and methoxylated PBDEs (MeO-PBDEs). Analyses of stable isotopes δ13C and δ15N in skin resulted in further insight in their feeding ecology, which was in agreement with a diet focused mainly on low trophic level prey species, such as krill from Antarctica. POPs were measured in all humpback whales in the order of HCB > DDTs > CHLs > HCHs > PCBs > PBDEs > MeO-BDEs. HCB (median: 24 ng.g-1 lw) and DDTs (median: 7.7 ng.g-1 lw) were the predominant compounds in all whale biopsies. Among DDT compounds, p,p’-DDE was the major organohalogenated pollutant, reflecting its long-term accumulation in humpback whales. Significantly lower concentrations of HCB and DDTs were found in females than in males (p<0.001). Other compounds were similar between the two genders (p>0.05). Differences in the HCB and DDTs suggested gender-specific transfer of some compounds to the offspring. POP concentrations were lower than previously reported results for humpback whales sampled near the Antarctic Peninsula, suggesting potential influence of their nutritional status and may indicate different exposures of the whales according to their feeding zones. Further investigations are required to assess exposure of southern humpback whales throughout their feeding zones.
显示更多 [+] 显示较少 [-]Determining potential adverse effects in marine fish exposed to pharmaceuticals and personal care products with the fish plasma model and whole-body tissue concentrations 全文
2017
Meador, James P. | Yeh, Andrew | Gallagher, Evan P.
The Fish Plasma Model (FPM) was applied to water exposure and tissue concentrations in fish collected from two wastewater treatment plant impacted estuarine sites. In this study we compared predicted fish plasma concentrations to Cmax values for humans, which represents the maximum plasma concentration for the minimum therapeutic dose. The results of this study show that predictions of plasma concentrations for a variety of pharmaceutical and personal care products (PPCPs) from effluent concentrations resulted in 37 compounds (54%) exceeding the response ratio (RR = Fish [Plasma]/1%Cmaxtotal) of 1 compared to 3 compounds (14%) detected with values generated with estuarine receiving water concentrations. When plasma concentrations were modeled from observed whole-body tissue residues, 16 compounds out of 24 detected for Chinook (67%) and 7 of 14 (50%) for sculpin resulted in an RRtissue value greater than 1, which highlights the importance of this dose metric over that using estuarine water. Because the tissue residue approach resulted in a high percentage of compounds with calculated response ratios exceeding a value of unity, we believe this is a more accurate representation for exposure in the field. Predicting plasma concentrations from tissue residues improves our ability to assess the potential for adverse effects in fish because exposure from all sources is captured. Tissue residues are also more likely to represent steady-state conditions compared to those from water exposure because of the inherent reduction in variability usually observed for field data and the time course for bioaccumulation. We also examined the RR in a toxic unit approach to highlight the importance of considering multiple compounds exhibiting a similar mechanism of action.
显示更多 [+] 显示较少 [-]Evaluation of mercury methylation and methylmercury demethylation rates in vegetated and non-vegetated saltmarsh sediments from two Portuguese estuaries 全文
2017
Cesário, Rute | Hintelmann, Holger | Mendes, Ricardo | Eckey, Kevin | Dimock, Brian | Araújo, Beatriz | Mota, Ana Maria | Canário, João
Neurotoxic methylmercury (MMHg) is formed from inorganic divalent mercury (Hg2+). However, it is poorly understood to what extent different mercury (Hg) pools contribute to existent MMHg levels. In this study, ambient concentrations of total Hg (THg) and MMHg as well as rates of methylation and demethylation were measured simultaneously in sediments with and without salt-marsh plant vegetation, which were collected in Guadiana and Tagus estuaries, Portugal. Concurrent processes of Hg methylation and MMHg demethylation were directly monitored and compared by spiking sediments cores with stable isotope tracers of 199Hg2+ and CH3201Hg+ followed by gas chromatographic separation and isotope-specific detection using inductively coupled plasma mass spectrometry. Compared to the Guadiana estuary, where concentrations were comparatively low, THg and MMHg levels varied between vegetated and non-vegetated sediments collected at the Rosário site (ROS) of the Tagus estuary. Methylation (KM) and demethylation rates (KD) were also different between estuaries being dependent on the presence of vegetation. In addition, the type of macrophyte species influenced KM and KD values. In fact, the highest KM value was found in Sarcocornia fruticosa vegetated sediments at the Castro Marim site in Guadiana (CM, 0.160 day−1) and the lowest KM was observed in non-vegetated sediments at the Alcochete site in Tagus (ALC, 0.009 day−1). KD varied by a factor of three among sites with highest rates of demethylation observed in non-vegetated sediments in Guadiana (12 ± 1.3 day−1, corresponding to a half-life of 1.4 ± 0.2 h). This study clearly shows that the presence of vegetation in sediments favors the formation of MMHg. Moreover, this effect might be site specific and further studies are needed to confirm the findings reported here.
显示更多 [+] 显示较少 [-]Quantification and speciation of volatile fatty acids in the aqueous phase 全文
2017
Lee, Jechan | Kim, Jieun | Oh, Jeong-Ik | Lee, Sang Ryong | Kwon, Eilhann E.
This study lays great emphasis on establishing a reliable analytical platform to quantify and specify volatile fatty acids (VFAs) in the aqueous phase by derivatizing VFAs into their corresponding alkyl esters via thermally-induced rapid esterification (only 10 s reaction time). To this end, reaction conditions for the thermally-induced rapid esterification are optimized. A volumetric ratio of 0.5 at 400 °C for VFA/methanol is identified as the optimal reaction conditions to give ∼90% volatile fatty acid methyl ester (VFAME) yield. To maintain a high yield of VFAMEs, this study suggests that dilution of the sample to an optimum concentration (∼500 ppm for each VFA) is required. Derivatization of VFAs into VFAMEs via the thermally-induced rapid esterification is more reliable to quantify and specify VFAs in the aqueous phase than conventional colorimetric method.
显示更多 [+] 显示较少 [-]Kinetic analysis of aerobic biotransformation pathways of a perfluorooctane sulfonate (PFOS) precursor in distinctly different soils 全文
2017
Zhang, Lilan | Lee, Linda S. | Niu, Junfeng | Liu, Jinxia
With the phaseout of perfluorooctane sulfonate (PFOS) production in most countries and its well known recalcitrance, there is a need to quantify the potential release of PFOS from precursors previously or currently being emitted into the environment. Aerobic biodegradation of N-ethyl perfluorooctane sulfonamidoethanol (EtFOSE) was monitored in two soils from Indiana, USA: an acidic forest silt loam (FRST-48, pH = 5.5) and a high pH agricultural loam (PSF-49, pH = 7.8) with similar organic carbon contents (2.4 and 2.6%) for 210 d and 180 d, respectively. At designated times, triplicate samples were sacrificed for which headspace samples were taken followed by three sequential extractions. Extracts were analyzed using HPLC-tandem mass spectrometry. Measured profiles of EtFOSE degradation and generation/degradation of subsequent metabolites were fitted to the Indiana soils data as well as to a previously published data set for a Canadian soil using an R-based model (KinGUII) to explore pathways and estimate half-lives (t1/2) for EtFOSE and metabolites. EtFOSE degradation ranged from a few days to up to a month. PFOS yields ranged form 1.06–5.49 mol% with the alkaline soils being four to five times higher than the acidic soil. In addition, a direct pathway to PFOS had to be invoked to describe the early generation of PFOS in the Canadian soil. Of all metabolites, the sulfonamidoacetic acids were the most persistent (t1/2 ≥ 3 months) in all soils. We hypothesized that while pH-pKa dependent speciation may have impacted rates, differences in microbial communities between the 3 soils arising from varied soil properties including pH, nutrient levels, soil management, and climatic regions are likely the major factors affecting pathways, rates, and PFOS yields.
显示更多 [+] 显示较少 [-]Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study in areas impacted by oil activities in Ecuador 全文
2017
Barraza, F. | Schreck, E. | Lévêque, T. | Uzu, G. | López, F. | Ruales, J. | Prunier, J. | Marquet, A. | Maurice, L.
Cacao from South America is especially used to produce premium quality chocolate. Although the European Food Safety Authority has not established a limit for cadmium (Cd) in chocolate raw material, recent studies demonstrate that Cd concentrations in cacao beans can reach levels higher than the legal limits for dark chocolate (0.8 mg kg−1, effective January 1st, 2019). Despite the fact that the presence of Cd in agricultural soils is related to contamination by fertilizers, other potential sources must be considered in Ecuador. This field study was conducted to investigate Cd content in soils and cacao cultivated on Ecuadorian farms in areas impacted by oil activities. Soils, cacao leaves, and pod husks were collected from 31 farms in the northern Amazon and Pacific coastal regions exposed to oil production and refining and compared to two control areas. Human gastric bioaccessibility was determined in raw cacao beans and cacao liquor samples in order to assess potential health risks involved. Our results show that topsoils (0–20 cm) have higher Cd concentrations than deeper layers, exceeding the Ecuadorian legislation limit in 39% of the sampling sites. Cacao leaves accumulate more Cd than pod husks or beans but, nevertheless, 50% of the sampled beans have Cd contents above 0.8 mg kg−1. Root-to-cacao transfer seems to be the main pathway of Cd uptake, which is not only regulated by physico-chemical soil properties but also agricultural practices. Additionally, natural Cd enrichment by volcanic inputs must not be neglected. Finally, Cd in cacao trees cannot be considered as a tracer of oil activities. Assuming that total Cd content and its bioaccessible fraction (up to 90%) in cacao beans and liquor is directly linked to those in chocolate, the health risk associated with Cd exposure varies from low to moderate.
显示更多 [+] 显示较少 [-]Atmospheric size-resolved trace elements in a city affected by non-ferrous metal smelting: Indications of respiratory deposition and health risk 全文
2017
Lyu, Yan | Zhang, Kai | Chai, Fahe | Cheng, Tiantao | Yang, Qing | Zheng, Zilong | Li, Xiang
This study examines size-resolved heavy metal data for particles sampled near an urban site affected by non-ferrous metal smelting in China with a focus on how particle sizes impact regional respiratory deposition behavior. Particles with aerodynamic diameters between 0.43 and 9 μm were collected during winter haze episodes from December 2011 to January 2012. The results showed that concentrations of individual trace elements ranged from ∼10⁻²–∼10⁴ ng/m³. Mass size distributions exhibit that Cu, Zn, As, Se, Ag, Cd, TI, and Pb have unimodal peak in fine particles range (<2.1 μm); Al, Ti, Fe, Sr, Cr, Co, Ni, Mo, and U have unimodal peak in coarse range (>2.1 μm), and Be, Na, Mg, Ca, Ba, Th, V, Mn, Sn, Sb, and K have bimodal profiles with a dominant peak in the fine range and a smaller peak in the coarse range. The total deposition fluxes of trace elements were estimated at 2.1 × 10⁻² – 4.1 × 10³ ng/h by the MPPD model, and the region with the highest contribution was the head region (42% ± 13%), followed by the tracheobronchial region (11% ± 3%) and pulmonary region (6% ± 1%). The daily intake of individual element for humans occurs via three main exposure pathways: ingestion (2.3 × 10⁻⁴ mg/kg/day), dermal contact (2.3 × 10⁻⁵ mg/kg/day), and inhalation (9.0 × 10⁻⁶ mg/kg/day). A further health risk assessment revealed that the risk values for humans were all above the guidelines of the hazard quotient (1) and cancer risk (10⁻⁶), indicating that there are potential non-cancer effects and cancer risks in this area.
显示更多 [+] 显示较少 [-]Transgenerational endpoints provide increased sensitivity and insight into multigenerational responses of Lymnaea stagnalis exposed to cadmium 全文
2017
Reátegui-Zirena, Evelyn G. | Fidder, Bridgette N. | Olson, Adric D. | Dawson, Daniel E. | Bilbo, Thomas R. | Salice, Christopher J.
Ecotoxicology provides data to inform environmental management. Many testing protocols do not consider offspring fitness and toxicant sensitivity. Cadmium (Cd) is a well-studied and ubiquitous toxicant but little is known about the effects on offspring of exposed parents (transgenerational effects). This study had three objectives: to identify endpoints related to offspring performance; to determine whether parental effects would manifest as a change in Cd tolerance in offspring and how parental exposure duration influenced the manifestation of parental effects. Adult snails were exposed to Cd 0, 25, 50, 100, 200 and 400 μg Cd/L for eight weeks. There were effects on adult endpoints (e.g., growth, reproduction) but only at the highest concentrations (>100 μg/L). Alternatively, we observed significant transgenerational effects at all Cd concentrations. Surprisingly, we found increased Cd tolerance in hatchlings from all parental Cd exposure concentrations even though eggs and hatchlings were in Cd-free conditions for 6 weeks. Explicit consideration of offspring performance adds value to current toxicity testing protocols. Parental exposure duration has important implications for offspring effects and that contaminant concentrations that are not directly toxic to parents can cause transgenerational changes in resistance that have significant implications for toxicity testing and adaptive responses.
显示更多 [+] 显示较少 [-]