细化搜索
结果 1-10 的 15
New insights of the application of water or ethanol-water plant extract rich in active compounds in food 全文
2023
Anna Plaskova | Jiri Mlcek
Plants are recognized as natural sources of antioxidants (e.g., polyphenols, flavonoids, vitamins, and other active compounds) that can be extracted by green solvents like water, ethanol, or their binary mixtures. Plant extracts are becoming more used as food additives in various food systems due to their antioxidant abilities. Their application in food increases the shelf life of products by preventing undesirable changes in nutritional and sensory properties, such as the formation off-flavors in lipid-rich food. This review summarizes the most recent literature about water or ethanol-water plant extracts used as flavors, colorings, and preservatives to fortify food and beverages. This study is performed with particular attention to describing the benefits of plant extract-fortified products such as meat, vegetable oils, biscuits, pastries, some beverages, yogurt, cheese, and other dairy products. Antioxidant-rich plant extracts can positively affect food safety by partially or fully replacing synthetic antioxidants, which have lately been linked to safety and health issues such as toxicological and carcinogenic consequences. On the other hand, the limitations and challenges of using the extract in food should be considered, like stability, level of purity, compatibility with matrix, price, sensory aspects like distinct taste, and others. In the future, continuous development and a tendency to use these natural extracts as food ingredients are expected, as indicated by the number of published works in this area, particularly in the past decade.
显示更多 [+] 显示较少 [-]Antioxidant and pro-oxidant in vitro evaluation of water-soluble food-related botanical extracts 全文
2011
Damien Dorman, H.J. | Hiltunen, Raimo
The total phenol content, antioxidant and pro-oxidant activities of deodourised, water-soluble aniseed, basil, caraway, cardamon, fennel, ginger, juniper, laurel and parsley extracts were estimated using a number of in vitro assays. The laurel and basil extracts contained the highest phenol content of 107.3±1.3 GAE [mg gallic acid equivalents/g (dry wt.) extract] and 98.5±1.4 GAE, respectively, whilst the ginger extract contained the lowest content at 14.9±0.9 GAE. Juniper, laurel and basil extracts were consistently better than the other extracts in terms of iron(III) reducing activity, inhibition of β-carotene-linoleate thermal co-oxidation and N,N-dimethyl-p-phenylenediamine and hydroxyl radical scavenging assays. Potential pro-oxidant activities of the extracts were assessed using both DNA and bovine serum albumin (BSA) as substrates. None of the extracts were capable of stimulating hydroxyl-mediated DNA fragmentation; however, the extracts could be categorised in the protein oxidation assay as extracts with (i) no significant (p>0.05) effect, (ii) a significant (p<0.05) protective effect or (iii) a significant (p<0.05) pro-oxidant effect. The extracts from juniper, laurel and basil had a pro-oxidative effect upon BSA at a dose of 2mg/ml, as estimated from the degree of carbonylation measured.
显示更多 [+] 显示较少 [-]Antiaflatoxigenic property of food grade antioxidants under different conditions of water activity in peanut grains 全文
2007
Passone, M.A. | Resnik, S. | Etcheverry, M.G.
Analytical grade (AG) and industrial grade (IG) of three-food grade antioxidants butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and propyl paraben (PP) were analyzed to prove their fungitoxic effect on Aspergillus section Flavi strains. The effect of interactions among 10 antioxidant treatments at water activity levels (0.982, 0.955, 0.937 aW) for 11 and 35 days of incubation and at 25 °C in peanut grains on mycelial growth (CFU g(-1)) and aflatoxin B(1) (AFB(1)) accumulation were evaluated. Both antioxidant grade treatments had a significant effect (P < 0.001) on fungal count. All antioxidant treatments showed the highest effectiveness on control of growth of peanut aflatoxigenic strains at 0.937 aW and at 11 days of incubation. Overall, AG and IG binary mixtures M3 (20 + 10 mM), M4 (20 + 20 mM) and ternary mixtures M5 (10 + 10 +10 mM), M6 (10 + 20 + 10 mM), M7 (20 + 10 + 10 mM) and M8 (20 + 20 + 10 mM) were the treatments most effective at inhibiting growth of Aspergillus section Flavi strains. Industrial grade BHA 10 and 20 mM, binary mixtures M1 (10 + 10 mM), M2 (10 + 20 mM), M3 (20 + 10 mM), M4 (20 + 20 mM) and ternary mixtures M5 (10 + 10 + 10 mM), M6 (10 + 20 + 10 mM), M7 (20 + 10 + 10 mM) and M8 (20 + 20 + 10 mM) completely inhibited AFB1 production. The studied results suggest that IG antioxidant mixtures have potential for controlling growth of these mycotoxigenic species and prevent aflatoxin accumulation at the peanut storage system.
显示更多 [+] 显示较少 [-]Toxic and recovery effects of copper on Caenorhabditiselegans by various food-borne and water-borne pathways 全文
2012
Yu, Zhen-Yang | Zhang, Jing | Yin, Da-Qiang
Copper pollutions are typical heavy metal contaminations, and their ability to move up food chains urges comprehensive studies on their effects through various pathways. Currently, four exposure pathways were prescribed as food-borne (FB), water-borne plus clean food (WCB), water–food-borne (WFB) and water-borne (WB). Caenorhabditiselegans was chosen as the model organism, and growth statuses, feeding abilities, the amounts of four antioxidant enzymes, and corresponding recovery effects under non-toxic conditions with food and without food were investigated. Based on analysis results, copper concentrations in exposure were significantly influenced by the presence of food and its uptake by C.elegans. Both exposure and recovery effects depended on exposure concentrations and food conditions. For exposure pathways with food, feeding abilities and growth statuses were generally WFB<WCB⩽FB (p<0.05). The antioxidant activities were up-regulated in the same order. Meanwhile, the exposure pathway without food (WB) caused non-up-regulated antioxidant activities, and had the best growth statuses. For recoveries with food, growth statuses, feeding abilities and the inductions of the antioxidant enzymes were all WB≈WFB<WCB<FB (p<0.05). For recoveries without food, the order of growth statuses remained WB>FB>WCB>WFB (p<0.05), while the antioxidant activities were all inhibited in a concentration–dependent fashion. In conclusion, contaminated food was the primary exposure pathway, and various pathways caused different responses of C.elegans.
显示更多 [+] 显示较少 [-]Using a Concentrate of Phenols Obtained from Olive Vegetation Water to Preserve Chilled Food: Two Case Studies 全文
2016
Fasolato, Luca | Cardazzo, Barbara | Balzan, Stefania | Carraro, Lisa | Andreani, Andrea Nadia | Taticchi, Agnese | Yambo,
Phenols are plant metabolites characterised by several interesting bioactive properties such as antioxidant and bactericidal activities. In this study the application of a phenols concentrate (PC) from olive vegetation water to two different fresh products – gilt-head seabream (Sparus aurata) and chicken breast – was described. Products were treated in a bath of PC (22 g/L; chicken breast) or sprayed with two different solutions (L1:0.75 and L2:1.5 mg/mL; seabream) and then stored under refrigeration conditions. The shelf life was monitored through microbiological analyses – quality index method for seabream and a specific sensory index for raw breast. The secondary products of lipid-peroxidation of the chicken breast were determined using the thiobarbituric acid reactive substances (TBARs) test on cooked samples. Multivariate statistical techniques were adopted to investigate the impact of phenols and microbiological data were fitted by DMfit software. In seabream, the levels of PC did not highlight any significant difference on microbiological and sensory features. DMfit models suggested an effect only on H₂S producing bacteria with an increased lag phase compared to the control samples (C: 87 h vs L2: 136 h). The results on chicken breast showed that the PC bath clearly modified the growth of Pseudomonas and Enterobacteriaceae. The phenol dipping was effective in limiting lipid-peroxidation (TBARs) after cooking. Treated samples disclosed an increase of shelf life of 2 days. These could be considered as preliminary findings suggesting the use of this concentrate as preservative in some fresh products.
显示更多 [+] 显示较少 [-]A comprehensive review on polarity, partitioning, and interactions of phenolic antioxidants at oil–water interface of food emulsions 全文
2021
Farooq, Shahzad | Abdullah, | Zhang, Hui | Weiss, Jochen
There has been a growing interest in developing effective strategies to inhibit lipid oxidation in emulsified food products by utilization of natural phenolic antioxidants owing to their growing popularity over the past decades. However, due to the complexity of emulsified systems, the inhibition mechanism of phenolic antioxidants against lipid oxidation is rather complicated and not yet fully understood. In order to highlight the importance of polarity of phenolic antioxidants in emulsified systems according to the polar paradox, this review covers the recent progress on chemical, enzymatic, and chemoenzymatic lipophilization techniques used to modify the polarity of antioxidants. The partitioning behavior of phenolic antioxidants at the oil–water interface, which can be influenced by the presence of synthetic surfactants and/or antioxidant emulsifiers (e.g., polysaccharides, proteins, and phospholipids), is discussed. In addition, the emerging phenolic antioxidants among phenolic acids, flavonoids, tocopherols, and stilbenes applied in food emulsions are elaborated. As well, the interactions of polar–nonpolar antioxidants are stressed as a promising strategy to induce synergistic interactions at oil–water interface for improved oxidative stability of emulsions.
显示更多 [+] 显示较少 [-]Bioactive pectic polysaccharides from bay tree pruning waste: Sequential subcritical water extraction and application in active food packaging 全文
2021
Rincón, E. | Espinosa, E. | García-Domínguez, M.T. | Balu, A.M. | Vilaplana, F. | Serrano, L. | Jiménez-Quero, A.
The potential isolation of bio-active polysaccharides from bay tree pruning waste was studied using sequential subcritical water extraction using different time-temperature combinations. The extracted polysaccharides were highly enriched in pectins while preserving their high molecular mass (10–100 kDa), presenting ideal properties for its application as additive in food packaging. Pectin-enriched chitosan films were prepared, improving the optical properties (≥95% UV-light barrier capacity), antioxidant capacity (˃95% radical scavenging activity) and water vapor permeability (≤14 g·Pa⁻¹·s⁻¹·m⁻¹·10⁻⁷) in comparison with neat chitosan-based films. Furthermore, the antimicrobial activity of chitosan was maintained in the hybrid films. Addition of 10% of pectins improved mechanical properties, increasing the Young's modulus 12%, and the stress resistance in 51%. The application of pectin-rich fractions from bay tree pruning waste as an additive in active food packaging applications, with triple action as antioxidant, barrier, and antimicrobial has been demonstrated.
显示更多 [+] 显示较少 [-]Food-grade antioxidants for control of Aspergillus section Flavi and interrelated mycoflora of stored peanuts with different water activities 全文
2009
Passone, M. | Doprado, M. | Etcheverry, M.
The inhibitory effect of butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) mixture on fungal populations, Aspergillus section Flavi and aflatoxins accumulation in in-pod peanuts during storage in big bags was investigated. In-pod peanuts were previously conditioned at different water activities (0.94, 0.88, 0.84 and 0.76 aw) and treated with food-grade antioxidants. Both control and treated peanuts were stored for 6 months and sampled at monthly intervals. BHA-BHT mixture reduced the incidence of peanut fungal populations between 0.6-20.4% and between 1.2-33.1% during 1-3 and 4-5 storage months, respectively. Aspergillus section Flavi counts decreased with 36.5%, 46.3% and 77.4% in peanuts conditioned at 0.94, 0.84 and 0.76 aw levels and treated with antioxidants. At the above peanut aw conditions, the treatment applied reduced aflatoxin accumulation by 72.1%, while any effect on this metabolite production was observed at 0.88 aw. The antioxidant formulation used in this study has the potential to control aflatoxigenic populations in in-pod peanuts stored in half-permeable silos at ≤0.84 aw level.
显示更多 [+] 显示较少 [-]Determination of Synthetic Food Colorants in Water-Soluble Beverages Individually by HPLC and Totally by Ce(IV)-Oxidative Spectrophotometry 全文
2012
Olgun, Fatos Ayca Ozdemir | Ozturk, Birsen Demirata | Apak, Reşat
Food colorants are an important class of food additives that give the first impression to consumers about the quality of food. Ce(IV)-reducing antioxidant capacity assay originally developed in our laboratories was adapted to the determination of synthetic food colorants for the first time. This method allowing for total antioxidant capacity assay of dietary polyphenols, flavonoids, and ascorbic acid in plant extracts is based on the room temperature oxidation of antioxidant compounds with Ce(IV) sulfate in dilute H2SO4 solution and measurement of the absorbance of unreacted Ce(IV) at 320 nm. The results of the proposed method were correlated with high-performance liquid chromatography (HPLC) findings. Individual standard solutions, synthetic mixtures of synthetic colorants, and colorant extracts were identified and quantified with HPLC on a C18 column equipped with a diode array detector, and slight modifications on the existing HPLC method were made to analyze synthetic colorant mixtures. This work proposes Ce(IV)-oxidative spectrophotometry as a complementary technique to HPLC in the analysis of food colorants.
显示更多 [+] 显示较少 [-]Evaluation of food grade antioxidant formulation for sustained antifungal, antiaflatoxigenic and insecticidal activities on peanut conditioned at different water activities 全文
2016
Garcia, Daiana | Girardi, Natalia Soledad | Passone, María Alejandra | Nesci, Andrea | Etcheverry, Miriam
The aim of this study was to investigate antifungal and insecticidal activity of two microencapsulated antioxidants: 2(3)-tert-butyl-4 hydroxyanisole (BHA) and 2,6-di(tert-butyl)-p-cresol (BHT) against Aspergillus section Flavi and Oryzaephilus surinamensis (L.), a vector carrier of aflatoxigenic fungi on stored peanuts. Susceptibility of Aspergillus section Flavi, insects, and aflatoxin B1 accumulation in sterile peanut kernels conditioned at two different water activities (aw) (0.83 aw and 0.95 aw) was determined with different doses of antioxidant formulations (10, 20 and 30 mM) during 45 days. Moreover, Aspergillus section Flavi isolation frequency from live and dead insects was evaluated. The BHA formulation completely inhibited Aspergillus section Flavi development regardless of aw and doses assayed. Antifungal effect of microencapsulated BHT was highly dependent on aw, with 86–100% fungal inhibition at 20 and 30 mM, at the lowest aw (0.83 aw) and at the end of the experiment. No aflatoxin accumulation was detected in samples treated with the BHA formulation. In general, low levels of Aspergillus section Flavi were detected in dead insects. Our results show efficacy for 45 days, in addition microencapsulated BHT could be an alternative to control peanut pests in dry kernels.
显示更多 [+] 显示较少 [-]