细化搜索
结果 1-4 的 4
Phage-Mediated Shiga Toxin 2 Gene Transfer in Food and Water 全文
2009
Imamovic, Lejla | Jofre, Juan | Schmidt, Herbert | Serra-Moreno, Ruth | Muniesa, Maite
Shiga toxin (stx) transduction in various food matrices has been evaluated with lysogens of Stx phages. stx transduction events were observed for many phages under appropriate conditions. Transduction did not occur at low pH and low temperatures. A total of 10³ to 10⁴ CFU ml⁻¹ was the minimal amount of donor and recipient strains necessary to generate transductants.
显示更多 [+] 显示较少 [-]The impact of temperature on the inactivation of enteric viruses in food and water: a review 全文
2012
Bertrand, I. | Schijven, J.F. | Sánchez, G. | WynâJones, P. | Ottoson, J. | Morin, T. | Muscillo, M. | Verani, M. | Nasser, A. | de Roda Husman, A.M. | Myrmel, M. | Sellwood, J. | Cook, N. | Gantzer, C.
Temperature is considered as the major factor determining virus inactivation in the environment. Food industries, therefore, widely apply temperature as virus inactivating parameter. This review encompasses an overview of viral inactivation and virus genome degradation data from published literature as well as a statistical analysis and the development of empirical formulae to predict virus inactivation. A total of 658 data (time to obtain a first log10 reduction) were collected from 76 published studies with 563 data on virus infectivity and 95 data on genome degradation. Linear model fitting was applied to analyse the effects of temperature, virus species, detection method (cell culture or molecular methods), matrix (simple or complex) and temperature category (<50 and ≥50°C). As expected, virus inactivation was found to be faster at temperatures ≥50°C than at temperatures <50°C, but there was also a significant temperature–matrix effect. Virus inactivation appeared to occur faster in complex than in simple matrices. In general, bacteriophages PRD1 and PhiX174 appeared to be highly persistent whatever the matrix or the temperature, which makes them useful indicators for virus inactivation studies. The virus genome was shown to be more resistant than infectious virus. Simple empirical formulas were developed that can be used to predict virus inactivation and genome degradation for untested temperatures, time points or even virus strains.
显示更多 [+] 显示较少 [-]On-farm wastewater treatment using biochar from local agroresidues reduces pathogens from irrigation water for safer food production in developing countries 全文
2019
Kaetzl, Korbinian | Lübken, Manfred | Uzun, Gülkader | Gehring, Tito | Nettmann, Edith | Stenchly, Kathrin | Wichern, Marc
In this study, the suitability of an anaerobic biofilter (AnBF) as an efficient and low-cost wastewater treatment for safer irrigation water production for Sub-Saharan Africa was investigated. To determine the influence of different ubiquitous available materials on the treatment efficiency of the AnBF, rice husks and their pyrolysed equivalent, rice husk biochar, were used as filtration media and compared with sand as a common reference material. Raw sewage from a municipal full-scale wastewater treatment plant pretreated with an anaerobic filter (AF) was used in this experiment. The filters were operated at 22 °C room temperature with a hydraulic loading rate of 0.05 m·h−1 for 400 days. The mean organic loading rate (OLR) of the AF was 194 ± 74 and 63 ± 16 gCOD·m−3·d−1 for the AnBF. Fecal indicator bacteria (FIB) (up to 3.9 log10-units), bacteriophages (up to 2.7 log10-units), chemical oxygen demand (COD) (up to 94%) and turbidity (up to 97%) could be significantly reduced. Additionally, the essential plant nutrients nitrogen and phosphorous were not significantly affected by the water treatment. Overall, the performance of the biochar filters was significantly better than or equal to the sand and rice husk filters. By using the treated wastewater for irrigating lettuce plants in a pot experiment, the contamination with FIB was >2.5 log-units lower (for most of the plants below the detection limit of 5.6 MPN per gram fresh weight) than for plants irrigated with raw wastewater. Respective soil samples were minimally contaminated and nearly in the same range as that of tap water.
显示更多 [+] 显示较少 [-]Combination treatment of ohmic heating with various essential oil components for inactivation of food-borne pathogens in buffered peptone water and salsa 全文
2017
Kim, Sang-Soon | Kang, Dong-Hyun
Consumer preference for minimally processed foods has steadily increased for several years, while foodborne outbreaks from under-processed foods continue to be reported worldwide. We investigated the combination effect of ohmic heating with various essential oil components for inactivation of foodborne pathogens in buffered peptone water and salsa. We choose carvone, eugenol, thymol, and citral to combine with ohmic heating, which are registered for use as flavorings in foodstuffs. Combination treatment of ohmic heating with citral showed the most synergistic bactericidal effect against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in buffered peptone water followed by thymol, eugenol, and carvone. When enumerated on selective media, the reductions were 4.8, 5.7, and 4.3 log CFU/ml for E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively. Cell membrane destruction by combination treatment and the loss of cell membrane potential by essential oil components were proposed as the bactericidal mechanism. When applied in salsa, inactivation of bacterial pathogens was the greatest with the ohmic and thymol combination treatment followed by citral, eugenol, and carvone. A synergistic virucidal effect was observed for MS -2 bacteriophage, which was used as a norovirus surrogate. Color (b* values) of salsa were improved by combination treatment of ohmic heating and thymol compared to ohmic treated samples. Therefore, the combination treatment of ohmic heating and thymol could be used effectively to pasteurize salsa.
显示更多 [+] 显示较少 [-]