细化搜索
结果 1-10 的 26
Nutrition, Food, and Water Security 全文
1999
Biswas, Margaret R.
Although nutritionists have long been aware of the importance of clean drinking water and sanitation, water is becoming part of the international political agenda only after a slow realization of its scarcity. This is mainly because water has been taken for granted in industrialized countries except during periods of drought. in many areas of developing countries, water shortages already exist. Even with improved management, new sources of water will have to be developed at higher costs per project. Provision of clean water and sanitation has been rendered difficult by rapid urbanization since the middle of the twentieth century. Although cities have managed to provide a water supply, they have not been able to provide sewage and wastewater treatment. Meanwhile, irrigated agriculture uses nearly 70% of world water. in the future, food security will become even more dependent on irrigation. Poor management, due mostly to low salaries and political interference, is one of the main reasons for inefficient water systems. Underpricing of water in towns and on farms discourages conservation. Furthermore, people who do not have access to tap water in developing countries pay 10 times more than those who have taps.
显示更多 [+] 显示较少 [-]Applying the food-energy-water nexus approach to urban agriculture: From FEW to FEWP (Food-Energy-Water-People) 全文
2021
Caputo, Silvio | Schoen, Victoria | Specht, Kathrin | Grard, Baptiste | Blythe, Chris | Cohen, Nevin | Fox-Kämper, Runrid | Hawes, Jason | Newell, Joshua | Poniży, Lidia
Many studies examine the correlation between the use of resources such as water, energy and land, and the production of food. These nexus studies focus predominantly on large scale systems, often considering the social dimensions only in terms of access to resources and participation in the decision-making process, rather than individual attitudes and behaviours with respect to resource use. Such a concept of the nexus is relevant to urban agriculture (UA), but it requires customisation to the particular characteristics of growing food in cities, which is practiced mainly at a small scale and produces not only food but also considerable social, economic, and environmental co-benefits. To this end, this paper proposes a new conceptual basis for a UA Nexus, together with an assessment methodology that explicitly includes social dimensions in addition to food, energy and water. The conceptual basis introduces People, together with Food, Energy and Water, as a fundamental factor of the UA Nexus. On this basis, a methodology is developed measuring not only resource efficiency and food production but also motivations and health benefits. It comprises a combination of methods such as diaries of everyday UA practices, a database of UA activities, life cycle assessment (LCA), and material flow analysis to connect investigations developed at a garden scale to the city scale. A case study shows an application of the methodology.
显示更多 [+] 显示较少 [-]On water security, sustainability, and the water-food-energy-climate nexus 全文
2013
Beck, M. B. | Villarroel Walker, Rodrigo
The role of water security in sustainable development and in the nexus of water, food, energy and climate interactions is examined from the starting point of the definition of water security offered by Grey and Sadoff. Much about the notion of security has to do with the presumption of scarcity in the resources required to meet human needs. The treatment of scarcity in mainstream economics is in turn examined, therefore, in relation to how each of us as individuals reconciles means with ends, a procedure at the core of the idea of sustainable development. According to the Grey-Sadoff definition, attaining water security amounts to achieving basic, single-sector water development as a precursor of more general, self-sustaining, multi-sectoral development. This is consistent with the way in which water is treated as “first among equals”, i.e. privileged, in thinking about what is key in achieving security around the nexus of water, food, energy and climate. Cities, of course, are locations where demands for these multiple resource-energy flows are increasingly being generated. The paper discusses two important facets of security, i.e., diversity of access to resources and services (such as sanitation) and resilience in the behavior of coupled human-built-natural systems. Eight quasi-operational principles, by which to gauge nexus security with respect to city buildings and infrastructure, are developed.
显示更多 [+] 显示较少 [-]Optimization of Water Grid at Macroscopic Level Analyzing Water–Energy–Food Nexus 全文
2018
González-Bravo, Ramón | Sauceda-Valenzuela, Mayra | Mahlknecht, Jürgen | Rubio-Castro, Eusiel | Ponce-Ortega, José María
Water, energy, and food are essential for human well-being and for sustainable development. Water is required in almost all types of electricity generation and it is highly consumed in food production. Cities, industry, and crop production have increased their needs for water, energy and land resources, and at the same time, they are facing problems associated with the environmental degradation and, in some regions, resource scarcity. This paper proposes a multiobjective optimization model for the design of a water distribution network from a water–energy–food nexus point of view. Additionally, crop production and cost relationships are integrated to account for the water and energy requirements in the agricultural sector. The economic objective is the maximization of annual gross profit, which accounts for the water, energy and food production; the environmental objective establishes the minimization of overall greenhouse gas emissions, and the social objective is the maximization of the number of jobs. In this paper, because the objectives are opposites, a multistakeholder assessment is proposed in order to analyze and quantify the relationship of the water–energy–food nexus to assess synergies that improve the decision-making process. The mathematical model was applied to a case study located in the Sonoran Desert in Mexico, in which, a series of scenarios were solved to illustrate the capabilities of the proposed optimization approach. The results show strong trade-offs between the considered objectives as well as the quantification of the water–energy–food nexus.
显示更多 [+] 显示较少 [-]Towards bridging the water gap in Texas: A water-energy-food nexus approach 全文
2019
Daher, Bassel T. | Lee, Sanghyun | Kaushik, Vishakha | Blake, John | Askariyeh, Mohammad Hashem | Shafiezadeh, Hamid | Zamaripa, Sonia | Mohtar, Rabi H. | Department of Agriculture | Faculty of Agricultural and Food Sciences (FAFS) | American University of Beirut
The 2017 Texas Water Development Board's State Water Plan predicts a 41% gap between water demand and existing supply by 2070. This reflects an overall projection, but the challenge will affect various regions of the state differently. Texas has 16 regional water planning zones characterized by distinct populations, water demands, and existing water supplies. Each is expected to face variations of pressures, such as increased agricultural and energy development (particularly hydraulic fracturing) and urban growth that do not necessarily follow the region's water plan. Great variability in resource distribution and competing resource demands across Texas will result in the emergence of distinct hotspots, each with unique characteristics that require multiple, localized, interventions to bridge the statewide water gap. This study explores three such hotspots: 1) water-food competition in Lubbock and the potential of producing 3 billion gallons of treated municipal waste water and encouraging dryland agriculture; 2) implementing Low Impact Developments (LIDs) for agriculture in the City of San Antonio, potentially adding 47 billion gallons of water supply, but carrying a potentially high financial cost; and 3) water-energy interrelations in the Eagle Ford Shale in light of well counts, climate dynamics, and population growth. The growing water gap is a state wide problem that requires holistic assessments that capture the impact on the tightly interconnected water, energy, and food systems. Better understanding the trade-offs associated with each 'solution’ and enabling informed dialogue between stakeholders, offers a basis for formulating localized policy recommendations specific to each hotspot. © 2018 Elsevier B.V.
显示更多 [+] 显示较少 [-]Food consumption and related water resources in Nordic cities 全文
2017
Vanham, D. | Gawlik, B.M. | Bidoglio, G.
Many modern cities have strongly invested in the sustainability of their urban water management system. Nordic cities like Stockholm or Copenhagen are amongst pioneers in investments towards integrated urban water management. However, cities can never be fully self-sufficient due to their dependency on external (water) resources. In this paper, we quantify this water dependency with respect to food consumption in nine cities located in the five Nordic countries (Sweden, Denmark, Finland, Norway and Iceland), by means of the water footprint concept. Detailed urban water footprint assessments are scarce in the literature. By analysing national nutrition surveys, we find that urban food intake behaviour differs from national food intake behaviour. In large Nordic cities people eat generally less potatoes, milk products (without cheese), meat and animal fats and they drink less coffee than outside city borders. On the other hand, they generally eat more vegetables and vegetable oils and they drink more tea and alcoholic beverages. This leads consistently – for the six large Nordic cities Stockholm, Malmö, Copenhagen, Helsinki, Oslo and Reykjavik – to slightly smaller food related urban water footprints (−2 to −6%) than national average values. We also analyse the water footprint for different diets based upon Nordic Nutrition Recommendations (NNR) for these cities. We assessed three healthy diet scenarios: 1) including meat (HEALTHY-MEAT), 2) pesco-vegetarian (HEALTHY-PESCO-VEG) and 3) vegetarian (HEALTHY-VEG). This shows that Nordic urban dwellers 1) eat too many animal products (red meat, milk and milk products) and sugar and drink too much alcohol and 2) they eat not enough vegetables, fruit and products from the group pulses, nuts and oilcrops. Their overall energy and protein intake is too high. A shift to a healthy diet with recommended energy and protein intake reduces the urban WF related to food consumption substantially. A shift to HEALTHY-MEAT results in a reduction of −9 to −24%, for HEALTHY-PESCO-VEG the reduction is −29 to −37%, for HEALTHY-VEG the reduction is −36 to −44%. In other words, Nordic urban dwellers can save a lot of water by shifting to a healthy diet.
显示更多 [+] 显示较少 [-]Food-energy-water (FEW) nexus for urban sustainability: A comprehensive review 全文
2019
Zhang, Pengpeng | Zhang, Lixiao | Chang, Yuan | Xu, Ming | Hao, Yan | Liang, Sai | Liu, Gengyuan | Yang, Zhifeng | Wang, Can
The emerging popularity of the nexus discussion reflects the ongoing transition from a sectoral or silo approach to an integrative approach to address the global challenges pertinent to the three essential resources: food, energy, and water (FEW). Cities are critically important for advancing regional sustainable development and are thus placed at the center of the FEW nexus. This paper provides a comprehensive literature review to debate the current concepts and methods of the FEW nexus at different scales, with the aim of developing a conceptual knowledgebase framework for scientific analysis and policy making associated with the urban FEW nexus. Although the concept of nexus thinking has been widely accepted, a consistent and explicit cognition of the FEW nexus is still lacking, and a sophisticated methodological modeling framework is urgently required at various scales. As such, we proposed a three-dimensional conceptual framework of the urban FEW nexus from the perspective of resource interdependency, resource provision and system integration. This framework is useful in steering the systematic modeling and integrative management of the complex nexus issues of urban systems with different perspectives. Finally, the future directions of urban nexus research are identified from four aspects, including systematic characterization, cross-region tele-connection mechanisms, co-decision model development, and governance transition.
显示更多 [+] 显示较少 [-]Role of water management for global food production and poverty alleviation 全文
2009
Schultz, Bart | Tardieu, Henri | Vidal, Alain
In the coming 25-30 years global food production will have to be doubled in order to maintain food security at the global level. With respect to this to a certain extent the advantage is that food prices have increased over the past seven to eight years, and especially during the past two years. This may put farmers who are able to sell at least a certain part of their harvest in a better position, provided that the increase in production costs is at a lower level. On the other hand it puts the poor people in the cities of the emerging and least developed countries in an increasingly complicated situation as it will require more of them to remain able to purchase their food. In this paper we give a summarised overview of the role of water management for global food production and poverty alleviation. It turns out that to maintain food security in the near and medium‐term future a substantially larger increase in production will be required than continuation of the present trend. While this is quite an effort, one may expect that at least for the near future the costs will remain at the present high level and that they may even increase further.
显示更多 [+] 显示较少 [-]The food-water quality nexus in periurban aquacultures downstream of Bangkok, Thailand 全文
2019
Mrozik, Wojciech | Vinitnantharat, Soydoa | Thongsamer, Thunchanok | Pansuk, Nipapun | Pattanachan, Pavinee | Thayanukul, Parinda | Acharya, Kishor | Baluja, Marcos Quintela | Hazlerigg, Charles | Robson, Aidan F. | Davenport, Russell J. | Werner, David
Peri-urban aquacultures produce nutritious food in proximity to markets, but poor surface water quality in rapidly expanding megacities threatens their success in emerging economies. Our study compared, for a wide range of parameters, water quality downstream of Bangkok with aquaculture regulations and standards. For parameters not meeting those requirements, we sought to establish whether aquaculture practice or external factors were responsible. We applied conventional and advanced methods, including micropollutant analysis, genetic markers, and 16S rRNA amplicon sequencing, to investigate three family-owned aquacultures spanning extensive, semi-intensive and intensive practices. Canals draining the city of Bangkok did not meet quality standards for water to be used in aquaculture, and were sources for faecal coliforms, Bacteriodes, Prevotella, Human E. coli, tetracycline resistance genes, and nitrogen into the aquaculture ponds. Because of these inputs, aquacultures suffered algae blooms, with and without fertilizer and feed addition to the ponds. The aquacultures were sources of salinity and the herbicide diuron into the canals. Diuron was detectable in shrimp, but not at a level of concern to human health. Given the extent and nature of pollution, peri-urban water policy should prioritize charging for urban wastewater treatment over water fees for small-scale agricultural users. The extensive aquaculture attenuated per year an estimated twenty population equivalents of nitrogen pollution and trillions of faecal coliform bacteria inputs from the canal. Extensive aquacultures could thus contribute to peri-urban blue-green infrastructures providing ecosystem services to the urban population such as flood risk management, food production and water pollution attenuation.
显示更多 [+] 显示较少 [-]Climate change and temperature rise: Implications on food- and water-borne diseases 全文
2012
El-Fadel, Mutasem | Ghanimeh, Sophia | Maroun, Rania | Alameddine, Ibrahim
This study attempts to quantify climate-induced increases in morbidity rates associated with food- and water-borne illnesses in the context of an urban coastal city, taking Beirut-Lebanon as a study area. A Poisson generalized linear model was developed to assess the impacts of temperature on the morbidity rate. The model was used with four climatic scenarios to simulate a broad spectrum of driving forces and potential social, economic and technologic evolutions. The correlation established in this study exhibits a decrease in the number of illnesses with increasing temperature until reaching a threshold of 19.2°C, beyond which the number of morbidity cases increases with temperature. By 2050, the results show a substantial increase in food- and water-borne related morbidity of 16 to 28% that can reach up to 42% by the end of the century under A1FI (fossil fuel intensive development) or can be reversed to ~0% under B1 (lowest emissions trajectory), highlighting the need for early mitigation and adaptation measures.
显示更多 [+] 显示较少 [-]